Skip to main content
ONTAP SAN Host Utilities

Configure Oracle Linux 9.x with NVMe-oF for ONTAP storage

Contributors netapp-pcarriga netapp-sarajane

Oracle Linux hosts support the NVMe over Fibre Channel (NVMe/FC) and NVMe over TCP (NVMe/TCP) protocols with Asymmetric Namespace Access (ANA). ANA provides multipathing functionality equivalent to asymmetric logical unit access (ALUA) in iSCSI and FCP environments.

Learn how to configure NVMe over Fabrics (NVMe-oF) hosts for Oracle Linux 9.x. For more support and feature information, see Oracle Linux ONTAP support and features.

NVMe-oF with Oracle Linux 9.x has the following known limitation:

  • The nvme disconnect-all command disconnects both root and data filesystems and might lead to system instability. Do not issue this on systems booting from SAN over NVMe-TCP or NVMe-FC namespaces.

Step 1: Optionally, enable SAN booting

You can configure your host to use SAN booting to simplify deployment and improve scalability. Use the Interoperability Matrix Tool to verify that your Linux OS, host bus adapter (HBA), HBA firmware, HBA boot BIOS, and ONTAP version support SAN booting.

Steps
  1. Create a NVMe namespace and map it to the host.

  2. Enable SAN booting in the server BIOS for the ports to which the SAN boot namespace is mapped.

    For information on how to enable the HBA BIOS, see your vendor-specific documentation.

  3. Reboot the host and verify that the OS is up and running.

Step 2: Install Oracle Linux and NVMe software and verify your configuration

Use the following procedure to validate the minimum supported Oracle Linux 9.x software versions.

Steps
  1. Install Oracle Linux 9.x on the server. After the installation is complete, verify that you are running the specified Oracle Linux 9.x kernel.

    uname -r

    Example Oracle Linux kernel version:

    6.12.0-1.23.3.2.el9uek.x86_64
  2. Install the nvme-cli package:

    rpm -qa|grep nvme-cli

    The following example shows an nvme-cli package version:

    nvme-cli-2.11-5.el9.x86_64
  3. Install the libnvme package:

    rpm -qa|grep libnvme

    The following example shows an libnvme package version:

    libnvme-1.11.1-1.el9.x86_64
  4. On the Oracle Linux 9.x host, check the hostnqn string at /etc/nvme/hostnqn:

    cat /etc/nvme/hostnqn

    The following example shows an hostnqn version:

    nqn.2014-08.org.nvmexpress:uuid:b1d95cd0-1f7c-11ec-b8d1-3a68dd61a1cb
  5. On the ONTAP system, verify that the hostnqn string matches the hostnqn string for the corresponding subsystem on the ONTAP storage system:

    vserver nvme subsystem host show -vserver vs_203
    Show example
    Vserver Subsystem Priority  Host NQN
    ------- --------- --------  --------------------------------------------------------------------
    vs_203  Nvme1     regular   nqn.2014-08.org.nvmexpress:uuid:b1d95cd0-1f7c-11ec-b8d1-3a68dd61a1cb
            Nvme10    regular   nqn.2014-08.org.nvmexpress:uuid:b1d95cd0-1f7c-11ec-b8d1-3a68dd61a1cb
            Nvme11    regular   nqn.2014-08.org.nvmexpress:uuid:b1d95cd0-1f7c-11ec-b8d1-3a68dd61a1cb
            Nvme12    regular   nqn.2014-08.org.nvmexpress:uuid:b1d95cd0-1f7c-11ec-b8d1-3a68dd61a1cb
            Nvme13    regular   nqn.2014-08.org.nvmexpress:uuid:b1d95cd0-1f7c-11ec-b8d1-3a68dd61a1cb
            Nvme14    regular   nqn.2014-08.org.nvmexpress:uuid:b1d95cd0-1f7c-11ec-b8d1-3a68dd61a1cb
    Note If the hostnqn strings don't match, you can use the vserver modify command to update the hostnqn string on your corresponding ONTAP array subsystem to match the hostnqn string from /etc/nvme/hostnqn on the host.

Step 3: Configure NVMe/FC and NVMe/TCP

Configure NVMe/FC with Broadcom/Emulex or Marvell/QLogic adapters, or configure NVMe/TCP using manual discovery and connect operations.

NVMe/FC - Broadcom/Emulex

Configure NVMe/FC for a Broadcom/Emulex adapter.

Steps
  1. Verify that you're using the supported adapter model:

    1. Display the model names:

      cat /sys/class/scsi_host/host*/modelname

      You should see the following output:

      LPe36002-M64-D
      LPe36002-M64-D
    2. Display the model descriptions:

      cat /sys/class/scsi_host/host*/modeldesc

      You should see an output similar to the following example:

      Emulex LPe36002-M64-D 2-Port 64Gb Fibre Channel Adapter
      Emulex LPe36002-M64-D 2-Port 64Gb Fibre Channel Adapter
  2. Verify that you are using the recommended Broadcom lpfc firmware and inbox driver:

    1. Display the firmware version:

      cat /sys/class/scsi_host/host*/fwrev

      The following example shows firmware versions:

      14.4.576.17, sli-4:6:d
      14.4.576.17, sli-4:6:d
    2. Display the inbox driver version:

      cat /sys/module/lpfc/version

      The following example shows a driver version:

      0:14.4.0.8

      For the current list of supported adapter driver and firmware versions, see the Interoperability Matrix Tool.

  3. Verify that lpfc_enable_fc4_type is set to 3:

    cat /sys/module/lpfc/parameters/lpfc_enable_fc4_type
  4. Verify that you can view your initiator ports:

    cat /sys/class/fc_host/host*/<port_name>

    The following example shows port identities:

    0x2100f4c7aa9d7c5c
    0x2100f4c7aa9d7c5d
  5. Verify that your initiator ports are online:

    cat /sys/class/fc_host/host*/port_state

    You should see the following output:

    Online
    Online
  6. Verify that the NVMe/FC initiator ports are enabled and that the target ports are visible:

    cat /sys/class/scsi_host/host*/nvme_info
    Show example
    NVME Initiator Enabled
    XRI Dist lpfc0 Total 6144 IO 5894 ELS 250
    NVME LPORT lpfc0 WWPN x100000620b3c0869 WWNN x200000620b3c0869 DID x080e00 ONLINE
    NVME RPORT       WWPN x2001d039eabac36f WWNN x2000d039eabac36f DID x021401 TARGET DISCSRVC ONLINE
    NVME RPORT       WWPN x20e2d039eabac36f WWNN x20e1d039eabac36f DID x02141f TARGET DISCSRVC ONLINE
    NVME RPORT       WWPN x2011d039eabac36f WWNN x2010d039eabac36f DID x021429 TARGET DISCSRVC ONLINE
    NVME RPORT       WWPN x2002d039eabac36f WWNN x2000d039eabac36f DID x021003 TARGET DISCSRVC ONLINE
    NVME RPORT       WWPN x20e4d039eabac36f WWNN x20e1d039eabac36f DID x02100f TARGET DISCSRVC ONLINE
    NVME RPORT       WWPN x2012d039eabac36f WWNN x2010d039eabac36f DID x021015 TARGET DISCSRVC ONLINE
    
    NVME Statistics
    LS: Xmt 0000027ccf Cmpl 0000027cca Abort 00000014
    LS XMIT: Err 00000005  CMPL: xb 00000014 Err 00000014
    Total FCP Cmpl 00000000000613ff Issue 00000000000613fc OutIO fffffffffffffffd
            abort 00000007 noxri 00000000 nondlp 00000000 qdepth 00000000 wqerr 00000000 err 00000000
    FCP CMPL: xb 0000000a Err 0000000d
    
    NVME Initiator Enabled
    XRI Dist lpfc1 Total 6144 IO 5894 ELS 250
    NVME LPORT lpfc1 WWPN x100000620b3c086a WWNN x200000620b3c086a DID x080000 ONLINE
    NVME RPORT       WWPN x2004d039eabac36f WWNN x2000d039eabac36f DID x021501 TARGET DISCSRVC ONLINE
    NVME RPORT       WWPN x20e3d039eabac36f WWNN x20e1d039eabac36f DID x02150f TARGET DISCSRVC ONLINE
    NVME RPORT       WWPN x2014d039eabac36f WWNN x2010d039eabac36f DID x021515 TARGET DISCSRVC ONLINE
    NVME RPORT       WWPN x2003d039eabac36f WWNN x2000d039eabac36f DID x02110b TARGET DISCSRVC ONLINE
    NVME RPORT       WWPN x20e5d039eabac36f WWNN x20e1d039eabac36f DID x02111f TARGET DISCSRVC ONLINE
    NVME RPORT       WWPN x2013d039eabac36f WWNN x2010d039eabac36f DID x021129 TARGET DISCSRVC ONLINE
    
    NVME Statistics
    LS: Xmt 0000027ca3 Cmpl 0000027ca2 Abort 00000017
    LS XMIT: Err 00000001  CMPL: xb 00000017 Err 00000017
    Total FCP Cmpl 000000000006369d Issue 000000000006369a OutIO fffffffffffffffd
            abort 00000007 noxri 00000000 nondlp 00000011 qdepth 00000000 wqerr 00000000 err 00000000
    FCP CMPL: xb 00000008 Err 0000000c
NVMe/FC - Marvell/QLogic

Configure NVMe/FC for a Marvell/QLogic adapter.

Steps
  1. Verify that you are running the supported adapter driver and firmware versions:

    cat /sys/class/fc_host/host*/symbolic_name

    The follow example shows driver and firware versions:

    QLE2872 FW:v9.15.03 DVR:v10.02.09.300-k
  2. Verify that ql2xnvmeenable is set. This enables the Marvell adapter to function as an NVMe/FC initiator:

    cat /sys/module/qla2xxx/parameters/ql2xnvmeenable

    The expected output is 1.

NVMe/TCP

The NVMe/TCP protocol doesn't support the auto-connect operation. Instead, you can discover the NVMe/TCP subsystems and namespaces by performing the NVMe/TCP connect or connect-all operations manually.

Steps
  1. Verify that the initiator port can fetch the discovery log page data across the supported NVMe/TCP LIFs:

    nvme discover -t tcp -w host-traddr -a traddr
    Show example
    nvme discover -t tcp -w 192.168.30.10 -a 192.168.30.58
    =====Discovery Log Entry 0======
    trtype:  tcp
    adrfam:  ipv4
    subtype: current discovery subsystem
    treq:    not specified
    portid:  8
    trsvcid: 8009
    subnqn:  nqn.1992-08.com.netapp:sn.064a9b19b3ee11f09dcad039eabac370:discovery
    traddr:  192.168.31.99
    eflags:  explicit discovery connections, duplicate discovery information
    sectype: none
    =====Discovery Log Entry 1======
    trtype:  tcp
    adrfam:  ipv4
    subtype: current discovery subsystem
    treq:    not specified
    portid:  6
    trsvcid: 8009
    subnqn:  nqn.1992-08.com.netapp:sn.064a9b19b3ee11f09dcad039eabac370:discovery
    traddr:  192.168.30.99
    eflags:  explicit discovery connections, duplicate discovery information
    sectype: none
    =====Discovery Log Entry 2======
    trtype:  tcp
    adrfam:  ipv4
    subtype: current discovery subsystem
    treq:    not specified
    portid:  7
    trsvcid: 8009
    subnqn:  nqn.1992-08.com.netapp:sn.064a9b19b3ee11f09dcad039eabac370:discovery
    traddr:  192.168.31.98
    eflags:  explicit discovery connections, duplicate discovery information
    sectype: none
    =====Discovery Log Entry 3======
    trtype:  tcp
    adrfam:  ipv4
    subtype: current discovery subsystem
    treq:    not specified
    portid:  5
    trsvcid: 8009
    subnqn:  nqn.1992-08.com.netapp:sn.064a9b19b3ee11f09dcad039eabac370:discovery
    traddr:  192.168.30.98
    eflags:  explicit discovery connections, duplicate discovery information
    sectype: none
    =====Discovery Log Entry 4======
    trtype:  tcp
    adrfam:  ipv4
    subtype: nvme subsystem
    treq:    not specified
    portid:  8
    trsvcid: 4420
    subnqn:  nqn.1992-08.com.netapp:sn.064a9b19b3ee11f09dcad039eabac370:subsystem.subsys_kvm
    traddr:  192.168.31.99
    eflags:  none
    sectype: none
    =====Discovery Log Entry 5======
    trtype:  tcp
    adrfam:  ipv4
    subtype: nvme subsystem
    treq:    not specified
    portid:  6
    trsvcid: 4420
    subnqn:  nqn.1992-08.com.netapp:sn.064a9b19b3ee11f09dcad039eabac370:subsystem.subsys_kvm
    traddr:  192.168.30.99
    eflags:  none
    sectype: none
    =====Discovery Log Entry 6======
    trtype:  tcp
    adrfam:  ipv4
    subtype: nvme subsystem
    treq:    not specified
    portid:  7
    trsvcid: 4420
    subnqn:  nqn.1992-08.com.netapp:sn.064a9b19b3ee11f09dcad039eabac370:subsystem.subsys_kvm
    traddr:  192.168.31.98
    eflags:  none
    sectype: none
    =====Discovery Log Entry 7======
    trtype:  tcp
    adrfam:  ipv4
    subtype: nvme subsystem
    treq:    not specified
    portid:  5
    trsvcid: 4420
    subnqn:  nqn.1992-08.com.netapp:sn.064a9b19b3ee11f09dcad039eabac370:subsystem.subsys_kvm
    traddr:  192.168.30.98
    eflags:  none
    sectype: none
  2. Verify that the other NVMe/TCP initiator-target LIF combinations can successfully fetch discovery log page data:

    nvme discover -t tcp -w host-traddr -a traddr
    Show example
    nvme discover -t tcp -w 192.168.30.10 -a 192.168.30.58
    nvme discover -t tcp -w 192.168.30.10 -a 192.168.30.59
    nvme discover -t tcp -w 192.168.31.10 -a 192.168.31.58
    nvme discover -t tcp -w 192.168.31.10 -a 192.168.31.59
  3. Run the nvme connect-all command across all the supported NVMe/TCP initiator-target LIFs across the nodes:

    nvme connect-all -t tcp -w host-traddr -a traddr
    Show example
    nvme connect-all -t tcp -w 192.168.30.10 -a 192.168.30.58
    nvme connect-all -t tcp -w 192.168.30.10 -a 192.168.30.59
    nvme connect-all -t tcp -w 192.168.31.10 -a 192.168.31.58
    nvme connect-all -t tcp -w 192.168.31.10 -a 192.168.31.59
Note

Beginning with Oracle Linux 9.4, the setting for the NVMe/TCP ctrl_loss_tmo timeout is automatically set to "off". As a result:

  • There are no limits on the number of retries (indefinite retry).

  • You don't need to manually configure a specific ctrl_loss_tmo timeout duration when using the nvme connect or nvme connect-all commands (option -l ).

  • The NVMe/TCP controllers don't experience timeouts in the event of a path failure and remain connected indefinitely.

Step 4: Optionally, modify the iopolicy in the udev rules

The Oracle Linux 9.x the host sets the default iopolicy for NVMe-oF to round-robin. Beginning with Oracle Linux 9.6, you can change the iopolicy to queue-depth by modifying the udev rules file.

Steps
  1. Open the udev rules file in a text editor with root privileges:

    /usr/lib/udev/rules.d/71-nvmf-netapp.rules

    You should see the following output:

    vi /usr/lib/udev/rules.d/71-nvmf-netapp.rules
  2. Find the line that sets iopolicy for the NetApp ONTAP Controller.

    The following example shows an example rule:

    ACTION=="add", SUBSYSTEM=="nvme-subsystem", ATTR{subsystype}=="nvm", ATTR{model}=="NetApp ONTAP Controller", ATTR{iopolicy}="round-robin"
  3. Modify the rule so that round-robin becomes queue-depth:

    ACTION=="add", SUBSYSTEM=="nvme-subsystem", ATTR{subsystype}=="nvm", ATTR{model}=="NetApp ONTAP Controller", ATTR{iopolicy}="queue-depth"
  4. Reload the udev rules and apply the changes:

    udevadm control --reload
    udevadm trigger --subsystem-match=nvme-subsystem
  5. Verify the current iopolicy for your subsystem. Replace <subsystem>, for example, nvme-subsys0.

    cat /sys/class/nvme-subsystem/<subsystem>/iopolicy

    You should see the following output:

    queue-depth.
Note The new iopolicy applies automatically to matching NetApp ONTAP Controller devices. No reboot is required.

Step 5: Optionally, enable 1MB I/O for NVMe/FC

ONTAP reports a Max Data Transfer Size (MDTS) of 8 in the Identify Controller data. This means the maximum I/O request size can be up to 1MB. To issue I/O requests of size 1MB for a Broadcom NVMe/FC host, you should increase the lpfc value of the lpfc_sg_seg_cnt parameter to 256 from the default value of 64.

Note These steps don't apply to Qlogic NVMe/FC hosts.
Steps
  1. Set the lpfc_sg_seg_cnt parameter to 256:

    cat /etc/modprobe.d/lpfc.conf

    You should see an output similar to the following example:

    options lpfc lpfc_sg_seg_cnt=256
  2. Run the dracut -f command, and reboot the host.

  3. Verify that the value for lpfc_sg_seg_cnt is 256:

    cat /sys/module/lpfc/parameters/lpfc_sg_seg_cnt

Step 6: Verify NVMe boot services

Beginning with Oracle Linux 9.5, the nvmefc-boot-connections.service and nvmf-autoconnect.service boot services included in the NVMe/FC nvme-cli package are automatically enabled when the system boots.

After booting completes, verify that the nvmefc-boot-connections.service and nvmf-autoconnect.service boot services are enabled.

Steps
  1. Verify that nvmf-autoconnect.service is enabled:

    systemctl status nvmf-autoconnect.service
    Show example output
    nvmf-autoconnect.service - Connect NVMe-oF subsystems automatically during boot
         Loaded: loaded (/usr/lib/systemd/system/nvmf-autoconnect.service; enabled; preset: disabled)
         Active: inactive (dead) since Tue 2025-10-07 09:48:11 EDT; 1 week 0 days ago
       Main PID: 2620 (code=exited, status=0/SUCCESS)
            CPU: 19ms
    
    Oct 07 09:48:11 R650xs-13-211 systemd[1]: Starting Connect NVMe-oF subsystems automatically during boot...
    Oct 07 09:48:11 R650xs-13-211 systemd[1]: nvmf-autoconnect.service: Deactivated successfully.
    Oct 07 09:48:11 R650xs-13-211 systemd[1]: Finished Connect NVMe-oF subsystems automatically during boot.
  2. Verify that nvmefc-boot-connections.service is enabled:

    systemctl status nvmefc-boot-connections.service
    Show example output
    nvmefc-boot-connections.service - Auto-connect to subsystems on FC-NVME devices found during boot
         Loaded: loaded (/usr/lib/systemd/system/nvmefc-boot-connections.service; enabled; preset: enabled)
         Active: inactive (dead) since Tue 2025-10-07 09:47:07 EDT; 1 week 0 days ago
       Main PID: 1651 (code=exited, status=0/SUCCESS)
            CPU: 14ms
    
    Oct 07 09:47:07 R650xs-13-211 systemd[1]: Starting Auto-connect to subsystems on FC-NVME devices found during boot...
    Oct 07 09:47:07 R650xs-13-211 systemd[1]: nvmefc-boot-connections.service: Deactivated successfully.
    Oct 07 09:47:07 R650xs-13-211 systemd[1]: Finished Auto-connect to subsystems on FC-NVME devices found during boot.

Step 7: Verify the multipathing configuration

Verify that the in-kernel NVMe multipath status, ANA status, and ONTAP namespaces are correct for the NVMe-oF configuration.

Steps
  1. Verify that the in-kernel NVMe multipath is enabled:

    cat /sys/module/nvme_core/parameters/multipath

    You should see the following output:

    Y
  2. Verify that the appropriate NVMe-oF settings (such as, model set to NetApp ONTAP Controller and load balancing iopolicy set to round-robin) for the respective ONTAP namespaces correctly reflect on the host:

    1. Display the subsystems:

      cat /sys/class/nvme-subsystem/nvme-subsys*/model

      You should see the following output:

      NetApp ONTAP Controller
      NetApp ONTAP Controller
    2. Display the policy:

      cat /sys/class/nvme-subsystem/nvme-subsys*/iopolicy

      You should see the value set for iopolicy, for example:

      queue-depth
      queue-depth
  3. Verify that the namespaces are created and correctly discovered on the host:

    nvme list
    Show example
    Node            Generic         SN                   Model                    Namespace  Usage                      Format         FW Rev
    --------------- --------------- -------------------- ------------------------ ---------- -------------------------- -------------  --------
    /dev/nvme102n1  /dev/ng102n1    81LLqNYTindCAAAAAAAk NetApp ONTAP Controller   0x1          2.25  GB /   5.37  GB   4 KiB +  0 B   9.17.1
    /dev/nvme102n2  /dev/ng102n2    81LLqNYTindCAAAAAAAk NetApp ONTAP Controller   0x2          2.25  GB /   5.37  GB   4 KiB +  0 B   9.17.1
    /dev/nvme106n1  /dev/ng106n1    81LLqNYTindCAAAAAAAs NetApp ONTAP Controller   0x1          2.25  GB /   5.37  GB   4 KiB +  0 B   9.17.1
    /dev/nvme106n2  /dev/ng106n2    81LLqNYTindCAAAAAAAs NetApp ONTAP Controller   0x2          2.25  GB /   5.37  GB   4 KiB +  0 B   9.17.1
  4. Verify that the controller state of each path is live and has the correct ANA status:

    NVMe/FC
    nvme list-subsys /dev/nvme4n5
    Show example
    nvme-subsys4 - NQN=nqn.1992-08.com.netapp:sn.f9c6d0cb4fef11f08579d039eaa8138c:discovery hostnqn=nqn.2014-08.org.nvmexpress:uuid:b1d95cd0-1f7c-11ec-b8d1-3a68dd61a1cb \ +- nvme2 fc traddr=nn-0x201ad039eabac36f:pn-0x201bd039eabac36f,host_traddr=nn-0x2000f4c7aa9d7c5c:pn-0x2100f4c7aa9d7c5c live optimized
    +- nvme8 fc traddr=nn-0x201ad039eabac36f:pn-0x201dd039eabac36f,host_traddr=nn-0x2000f4c7aa9d7c5d:pn-0x2100f4c7aa9d7c5d live non-optimized
    +- nvme2 fc traddr=nn-0x201ad039eabac36f:pn-0x201bd039eabac36f,host_traddr=nn-0x2000f4c7aa9d7c5c:pn-0x2100f4c7aa9d7c5c live non-optimized
    +- nvme8 fc traddr=nn-0x201ad039eabac36f:pn-0x201dd039eabac36f,host_traddr=nn-0x2000f4c7aa9d7c5d:pn-0x2100f4c7aa9d7c5d live optimized
    NVMe/TCP
    nvme list-subsys /dev/nvme1n1
    Show example
    nvme-subsys98 - NQN=nqn.1992-08.com.netapp:sn.f9c6d0cb4fef11f08579d039eaa8138c:subsystem.Nvme9
                    hostnqn=nqn.2014-08.org.nvmexpress:uuid:b1d95cd0-1f7c-11ec-b8d1-3a68dd61a1cb
    \
     +- nvme100 fc traddr=nn-0x201ad039eabac36f:pn-0x201dd039eabac36f,host_traddr=nn-0x2000f4c7aa9d7c5d:pn-0x2100f4c7aa9d7c5d live non-optimized
     +- nvme101 fc traddr=nn-0x201ad039eabac36f:pn-0x201cd039eabac36f,host_traddr=nn-0x2000f4c7aa9d7c5c:pn-0x2100f4c7aa9d7c5c live non-optimized
     +- nvme98 fc traddr=nn-0x201ad039eabac36f:pn-0x201bd039eabac36f,host_traddr=nn-0x2000f4c7aa9d7c5c:pn-0x2100f4c7aa9d7c5c live optimized
     +- nvme99 fc traddr=nn-0x201ad039eabac36f:pn-0x201ed039eabac36f,host_traddr=nn-0x2000f4c7aa9d7c5d:pn-0x2100f4c7aa9d7c5d live optimized
    [root@SR630-13-203 ~]#
  5. Verify that the NetApp plug-in displays the correct values for each ONTAP namespace device:

    Column
    nvme netapp ontapdevices -o column
    Show example
    Device           Vserver    Namespace Path          NSID UUID                                   Size
    ---------------- ---------- ----------------------- ---- -------------------------------------- ------
    /dev/nvme102n1   vs_203     /vol/Nvmevol35/ns35     1    00e760c9-e4ca-4d9f-b1d4-e9a930bf53c0   5.37GB
    /dev/nvme102n2   vs_203     /vol/Nvmevol83/ns83     2    1fa97524-7dc2-4dbc-b4cf-5dda9e7095c0   5.37GB
    JSON
    nvme netapp ontapdevices -o json
    Show example
    {
      "ONTAPdevices":[
        {
          "Device":"/dev/nvme11n1",
          "Vserver":"vs_203",
          "Namespace_Path":"/vol/Nvmevol16/ns16",
          "NSID":1,
          "UUID":"18a88771-8b5b-4eb7-bff0-2ae261f488e4",
          "LBA_Size":4096,
          "Namespace_Size":5368709120,
          "UsedBytes":2262282240,
          "Version":"9.17.1"
            }
      ]
    }

Step 8: Set up secure in-band authentication

Secure in-band authentication is supported over NVMe/TCP between a Oracle Linux 9.x host and an ONTAP controller.

Each host or controller must be associated with a DH-HMAC-CHAP key to set up secure authentication. A DH-HMAC-CHAP key is a combination of the NQN of the NVMe host or controller and an authentication secret configured by the administrator. To authenticate its peer, an NVMe host or controller must recognize the key associated with the peer.

Steps

Set up secure in-band authentication using the CLI or a config JSON file. Use a config JSON file if you need to specify different dhchap keys for different subsystems.

CLI

Set up secure in-band authentication using the CLI.

  1. Obtain the host NQN:

    cat /etc/nvme/hostnqn
  2. Generate the dhchap key for the Linux host.

    The following output describes the gen-dhchap-key command paramters:

    nvme gen-dhchap-key -s optional_secret -l key_length {32|48|64} -m HMAC_function {0|1|2|3} -n host_nqn
    •	-s secret key in hexadecimal characters to be used to initialize the host key
    •	-l length of the resulting key in bytes
    •	-m HMAC function to use for key transformation
    0 = none, 1- SHA-256, 2 = SHA-384, 3=SHA-512
    •	-n host NQN to use for key transformation

    In the following example, a random dhchap key with HMAC set to 3 (SHA-512) is generated.

    # nvme gen-dhchap-key -m 3 -n nqn.2014-08.org.nvmexpress:uuid:4c4c4544-0056-5410-8048-c4c04f425633
    DHHC-1:03:xhAfbAD5IVLZDxiVbmFEOA5JZ3F/ERqTXhHzZQJKgkYkTbPI9dhRyVtr4dBD+SGiAJO3by4FbnVtov1Lmk+86+nNc6k=:
  3. On the ONTAP controller, add the host and specify both dhchap keys:

    vserver nvme subsystem host add -vserver <svm_name> -subsystem <subsystem> -host-nqn <host_nqn> -dhchap-host-secret <authentication_host_secret> -dhchap-controller-secret <authentication_controller_secret> -dhchap-hash-function {sha-256|sha-512} -dhchap-group {none|2048-bit|3072-bit|4096-bit|6144-bit|8192-bit}
  4. A host supports two types of authentication methods, unidirectional and bidirectional. On the host, connect to the ONTAP controller and specify dhchap keys based on the chosen authentication method:

    nvme connect -t tcp -w <host-traddr> -a <tr-addr> -n <host_nqn> -S <authentication_host_secret> -C <authentication_controller_secret>
  5. Validate the nvme connect authentication command by verifying the host and controller dhchap keys:

    1. Verify the host dhchap keys:

      cat /sys/class/nvme-subsystem/<nvme-subsysX>/nvme*/dhchap_secret
      Show example output for a unidirectional configuration
      cat /sys/class/nvme-subsystem/nvme-subsys1/nvme*/dhchap_secret
      DHHC-1:03:Y5VkkESgmtTGNdX842qemNpFK6BXYVwwnqErgt3IQKP5Fbjje\/JSBOjG5Ea3NBLRfuiAuUSDUto6eY\/GwKoRp6AwGkw=:
      DHHC-1:03:Y5VkkESgmtTGNdX842qemNpFK6BXYVwwnqErgt3IQKP5Fbjje\/JSBOjG5Ea3NBLRfuiAuUSDUto6eY\/GwKoRp6AwGkw=:
      DHHC-1:03:Y5VkkESgmtTGNdX842qemNpFK6BXYVwwnqErgt3IQKP5Fbjje\/JSBOjG5Ea3NBLRfuiAuUSDUto6eY\/GwKoRp6AwGkw=:
      DHHC-1:03:Y5VkkESgmtTGNdX842qemNpFK6BXYVwwnqErgt3IQKP5Fbjje\/JSBOjG5Ea3NBLRfuiAuUSDUto6eY\/GwKoRp6AwGkw=:
    2. Verify the controller dhchap keys:

      cat /sys/class/nvme-subsystem/<nvme-subsysX>/nvme*/dhchap_ctrl_secret
      Show example output for a bidirectional configuration
      cat /sys/class/nvme-subsystem/nvme-subsys6/nvme*/dhchap_ctrl_secret
      DHHC-1:03:frpLlTrnOYtcWDxPzq4ccxU1UrH2FjV7hYw5s2XEDB+lo+TjMsOwHR\/NFtM0nBBidx+gdoyUcC5s6hOOtTLDGcz0Kbs=:
      DHHC-1:03:frpLlTrnOYtcWDxPzq4ccxU1UrH2FjV7hYw5s2XEDB+lo+TjMsOwHR\/NFtM0nBBidx+gdoyUcC5s6hOOtTLDGcz0Kbs=:
      DHHC-1:03:frpLlTrnOYtcWDxPzq4ccxU1UrH2FjV7hYw5s2XEDB+lo+TjMsOwHR\/NFtM0nBBidx+gdoyUcC5s6hOOtTLDGcz0Kbs=:
      DHHC-1:03:frpLlTrnOYtcWDxPzq4ccxU1UrH2FjV7hYw5s2XEDB+lo+TjMsOwHR\/NFtM0nBBidx+gdoyUcC5s6hOOtTLDGcz0Kbs=:
JSON

When multiple NVMe subsystems are available on the ONTAP controller configuration, you can use the /etc/nvme/config.json file with the nvme connect-all command.

Use the -o option to generate the JSON file. See the NVMe connect-all manual pages for more syntax options.

  1. Configure the JSON file:

    Show example
    [
      {
        "hostnqn":"nqn.2014-08.org.nvmexpress:uuid:4c4c4544-0056-5410-8048-c4c04f425633",
        "hostid":"4c4c4544-0056-5410-8048-c4c04f425633",
        "dhchap_key":"DHHC-1:01:nFg06gV0FNpXqoiLOF0L+swULQpZU/PjU9v/McDeJHjTZFlF:",
        "subsystems":[
          {
            "nqn":"nqn.1992-08.com.netapp:sn.09035a8d8c8011f0ac0fd039eabac370:subsystem.subsys",
            "ports":[
              {
                "transport":"tcp",
                "traddr":"192.168.30.69",
                "host_traddr":"192.168.30.10",
                "trsvcid":"4420",
                "dhchap_ctrl_key":"DHHC-1:03:n3F8d+bvxKW/s+lEhqXaOohI2sxrQ9iLutzduuFq49JgdjjaFtTpDSO9kQl/bvZj+Bo3rdHh3xPXeP6a4xyhcRyqdds=:"
              }
            ]
          }
        ]
      }
    ]
    Note In the preceding example, dhchap_key corresponds to dhchap_secret and dhchap_ctrl_key corresponds to dhchap_ctrl_secret.
  2. Connect to the ONTAP controller using the config JSON file:

    nvme connect-all -J /etc/nvme/config.json
  3. Verify that the dhchap secrets have been enabled for the respective controllers for each subsystem:

    1. Verify the host dhchap keys:

      cat /sys/class/nvme-subsystem/nvme-subsys0/nvme0/dhchap_secret

      The following example shows a dhchap key:

      DHHC-1:01:nFg06gV0FNpXqoiLOF0L+swULQpZU/PjU9v/McDeJHjTZFlF:
    2. Verify the controller dhchap keys:

      cat /sys/class/nvme-subsystem/nvme-subsys0/nvme0/dhchap_ctrl_secret

      You should see an output similar to the following example:

      DHHC-1:03:n3F8d+bvxKW/s+lEhqXaOohI2sxrQ9iLutzduuFq49JgdjjaFtTpDSO9kQl/bvZj+Bo3rdHh3xPXeP6a4xyhcRyqdds=:

Step 9: Review the known issues

There are no known issues.