Replace the NVRAM module and/or NVRAM DIMMs - AFF A900

Contributors dougthomp netapp-martyh thrisun

The NVRAM module consists of the NVRAM11 and DIMMs. You can replace a failed NVRAM module or the DIMMs inside the NVRAM module. To replace a failed NVRAM module, you must remove it from the chassis, move the DIMMs to the replacement module, and install the replacement NVRAM module into the chassis.

To replace and NVRAM DIMM, you must remove the NVRAMmodule from th chassis, replace the failed DIMM in the module, and then reinstall the NVRAM module.

About this task

Because the system ID is derived from the NVRAM module, if replacing the module, disks belonging to the system are reassigned to a new system ID.

Before you begin
  • All disk shelves must be working properly.

  • If your system is in an HA pair, the partner controller must be able to take over the controller associated with the NVRAM module that is being replaced.

  • This procedure uses the following terminology:

    • The impaired controller is the controller on which you are performing maintenance.

    • The healthy controller is the HA partner of the impaired controller.

  • This procedure includes steps for automatically or manually reassigning disks to the controller module associated with the new NVRAM module. You must reassign the disks when directed to in the procedure. Completing the disk reassignment before giveback can cause issues.

  • You must replace the failed component with a replacement FRU component you received from your provider.

  • You cannot change any disks or disk shelves as part of this procedure.

Step 1: Shut down the impaired controller

Steps

Shut down or take over the impaired controller using one of the following options.

Option 1: Most systems

To shut down the impaired controller, you must determine the status of the controller and, if necessary, take over the controller so that the healthy controller continues to serve data from the impaired controller storage.

About this task
  • If you are using NetApp Storage Encryption, you must have reset the MSID using the instructions in the “Returning SEDs to unprotected mode” section of the ONTAP 9 NetApp Encryption Power Guide.

  • If you have a SAN system, you must have checked event messages (event log show) for impaired controller SCSI blade.

    Each SCSI-blade process should be in quorum with the other nodes in the cluster. Any issues must be resolved before you proceed with the replacement.

  • If you have a cluster with more than two nodes, it must be in quorum. If the cluster is not in quorum or a healthy controller shows false for eligibility and health, you must correct the issue before shutting down the impaired controller; see the Administration overview with the CLI.

  • If you have a MetroCluster configuration, you must have confirmed that the MetroCluster Configuration State is configured and that the nodes are in an enabled and normal state (metrocluster node show).

Steps
  1. If AutoSupport is enabled, suppress automatic case creation by invoking an AutoSupport message: system node autosupport invoke -node * -type all -message MAINT=number_of_hours_downh

    The following AutoSupport message suppresses automatic case creation for two hours: cluster1:*> system node autosupport invoke -node * -type all -message MAINT=2h

  2. Disable automatic giveback from the console of the healthy controller: storage failover modify –node local -auto-giveback false

  3. Take the impaired controller to the LOADER prompt:

    If the impaired controller is displaying…​ Then…​

    The LOADER prompt

    Go to Remove controller module.

    Waiting for giveback…​

    Press Ctrl-C, and then respond y when prompted.

    System prompt or password prompt (enter system password)

    Take over or halt the impaired controller from the healthy controller: storage failover takeover -ofnode impaired_node_name

    When the impaired controller shows Waiting for giveback…​, press Ctrl-C, and then respond y.

Option 2: Controller is in a MetroCluster
Note Do not use this procedure if your system is in a two-node MetroCluster configuration.

To shut down the impaired controller, you must determine the status of the controller and, if necessary, take over the controller so that the healthy controller continues to serve data from the impaired controller storage.

  • If you have a cluster with more than two nodes, it must be in quorum. If the cluster is not in quorum or a healthy controller shows false for eligibility and health, you must correct the issue before shutting down the impaired controller; see the Administration overview with the CLI.

  • If you have a MetroCluster configuration, you must have confirmed that the MetroCluster Configuration State is configured and that the nodes are in an enabled and normal state (metrocluster node show).

Steps
  1. If AutoSupport is enabled, suppress automatic case creation by invoking an AutoSupport message: system node autosupport invoke -node * -type all -message MAINT=number_of_hours_downh

    The following AutoSupport message suppresses automatic case creation for two hours: cluster1:*> system node autosupport invoke -node * -type all -message MAINT=2h

  2. Disable automatic giveback from the console of the healthy controller: storage failover modify –node local -auto-giveback false

  3. Take the impaired controller to the LOADER prompt:

    If the impaired controller is displaying…​ Then…​

    The LOADER prompt

    Go to Remove controller module.

    Waiting for giveback…​

    Press Ctrl-C, and then respond y when prompted.

    System prompt or password prompt (enter system password)

    Take over or halt the impaired controller from the healthy controller: storage failover takeover -ofnode impaired_node_name

    When the impaired controller shows Waiting for giveback…​, press Ctrl-C, and then respond y.

Step 2: Replace the NVRAM module

To replace the NVRAM module, locate it in slot 6 in the chassis and follow the specific sequence of steps.

  1. If you are not already grounded, properly ground yourself.

  2. Remove the target NVRAM module from the chassis:

    1. Depress the lettered and numbered cam button.

      The cam button moves away from the chassis.

    2. Rotate the cam latch down until it is in a horizontal position.

      The NVRAM module disengages from the chassis and moves out a few inches.

    3. Remove the NVRAM module from the chassis by pulling on the pull tabs on the sides of the module face.

      drw a900 move remove NVRAM module

      legend icon 01

      Lettered and numbered I/O cam latch

      legend icon 02

      I/O latch completely unlocked

  3. Set the NVRAM module on a stable surface and remove the cover from the NVRAM module by pushing down on the blue locking button on the cover, and then, while holding down the blue button, slide the lid off the NVRAM module.

    drw a900 remove NVRAM module contents

    legend icon 01

    Cover locking button

    legend icon 02

    DIMM and DIMM ejector tabs

  4. Remove the DIMMs, one at a time, from the old NVRAM module and install them in the replacement NVRAM module.

  5. Close the cover on the module.

  6. Install the replacement NVRAM module into the chassis:

    1. Align the module with the edges of the chassis opening in slot 6.

    2. Gently slide the module into the slot until the lettered and numbered I/O cam latch begins to engage with the I/O cam pin, and then push the I/O cam latch all the way up to lock the module in place.

Step 3: Replace a NVRAM DIMM

To replace NVRAM DIMMs in the NVRAM module, you must remove the NVRAM module, open the module, and then replace the target DIMM.

  1. If you are not already grounded, properly ground yourself.

  2. Remove the target NVRAM module from the chassis:

    1. Depress the lettered and numbered cam button.

      The cam button moves away from the chassis.

    2. Rotate the cam latch down until it is in a horizontal position.

      The NVRAM module disengages from the chassis and moves out a few inches.

    3. Remove the NVRAM module from the chassis by pulling on the pull tabs on the sides of the module face.

      drw a900 move remove NVRAM module

      legend icon 01

      Lettered and numbered I/O cam latch

      legend icon 02

      I/O latch completely unlocked

  3. Set the NVRAM module on a stable surface and remove the cover from the NVRAM module by pushing down on the blue locking button on the cover, and then, while holding down the blue button, slide the lid off the NVRAM module.

    drw a900 remove NVRAM module contents

    legend icon 01

    Cover locking button

    legend icon 02

    DIMM and DIMM ejector tabs

  4. Locate the DIMM to be replaced inside the NVRAM module, and then remove it by pressing down on the DIMM locking tabs and lifting the DIMM out of the socket.

    Each DIMM has an LED next to it that flashes when the DIMM has failed.

  5. Install the replacement DIMM by aligning the DIMM with the socket and gently pushing the DIMM into the socket until the locking tabs lock in place.

  6. Close the cover on the module.

  7. Install the NVRAM module into the chassis:

    1. Align the module with the edges of the chassis opening in slot 6.

    2. Gently slide the module into the slot until the lettered and numbered I/O cam latch begins to engage with the I/O cam pin, and then push the I/O cam latch all the way up to lock the module in place.

Step 4: Reboot the controller after FRU replacement

After you replace the FRU, you must reboot the controller module.

  1. To boot ONTAP from the LOADER prompt, enter bye.

Step 5: Verify and set the HA state of the controller module

You must verify the HA state of the controller module and, if necessary, update the state to match your system configuration.

  1. In Maintenance mode from the replacement controller module, verify that all components display the same HA state: ha-config show

    If your system is in…​ The HA state for all components should be…​

    An HA pair

    ha

    A MetroCluster FC configuration with four or more nodes

    mcc

    A MetroCluster IP configuration

    mccip

  2. If the displayed system state of the controller module does not match your system configuration, set the HA state for the controller module: ha-config modify controller ha-state

  3. If the displayed system state of the chassis does not match your system configuration, set the HA state for the chassis: ha-config modify chassis ha-state

Step 6: Reassigning disks

You must confirm the system ID change when you boot the replacement controller and then verify that the change was implemented.

This procedure applies only to systems running ONTAP in an HA pair.

Steps
  1. If the replacement controller is in Maintenance mode (showing the *> prompt, exit Maintenance mode and go to the LOADER prompt: halt

  2. From the LOADER prompt on the replacement controller, boot the controller, entering y if you are prompted to override the system ID due to a system ID mismatch.

  3. Wait until the Waiting for giveback…​ message is displayed on the replacement controller console and then, from the healthy controller, verify that the new partner system ID has been automatically assigned: storage failover show

    In the command output, you should see a message that the system ID has changed on the impaired controller, showing the correct old and new IDs. In the following example, node2 has undergone replacement and has a new system ID of 151759706.

    node1> `storage failover show`
                                        Takeover
    Node              Partner           Possible     State Description
    ------------      ------------      --------     -------------------------------------
    node1             node2             false        System ID changed on partner (Old:
                                                      151759755, New: 151759706), In takeover
    node2             node1             -            Waiting for giveback (HA mailboxes)
  4. From the healthy controller, verify that any coredumps are saved:

    1. Change to the advanced privilege level: set -privilege advanced

      You can respond Y when prompted to continue into advanced mode. The advanced mode prompt appears (*>).

    2. Save any coredumps: system node run -node local-node-name partner savecore

    3. Wait for the `savecore`command to complete before issuing the giveback.

      You can enter the following command to monitor the progress of the savecore command: system node run -node local-node-name partner savecore -s

    4. Return to the admin privilege level: set -privilege admin

  5. Give back the controller:

    1. From the healthy controller, give back the replaced controller’s storage: storage failover giveback -ofnode replacement_node_name

      The replacement controller takes back its storage and completes booting.

      If you are prompted to override the system ID due to a system ID mismatch, you should enter y.

      Note If the giveback is vetoed, you can consider overriding the vetoes.

      For more information, see the Manual giveback commands topic to override the veto.

    2. After the giveback has been completed, confirm that the HA pair is healthy and that takeover is possible: storage failover show

      The output from the storage failover show command should not include the System ID changed on partner message.

  6. Verify that the disks were assigned correctly: storage disk show -ownership

    The disks belonging to the replacement controller should show the new system ID. In the following example, the disks owned by node1 now show the new system ID, 1873775277:

    node1> `storage disk show -ownership`
    
    Disk  Aggregate Home  Owner  DR Home  Home ID    Owner ID  DR Home ID Reserver  Pool
    ----- ------    ----- ------ -------- -------    -------    -------  ---------  ---
    1.0.0  aggr0_1  node1 node1  -        1873775277 1873775277  -       1873775277 Pool0
    1.0.1  aggr0_1  node1 node1           1873775277 1873775277  -       1873775277 Pool0
    .
    .
    .
  7. If the system is in a MetroCluster configuration, monitor the status of the controller: metrocluster node show

    The MetroCluster configuration takes a few minutes after the replacement to return to a normal state, at which time each controller will show a configured state, with DR Mirroring enabled and a mode of normal. The metrocluster node show -fields node-systemid command output displays the old system ID until the MetroCluster configuration returns to a normal state.

  8. If the controller is in a MetroCluster configuration, depending on the MetroCluster state, verify that the DR home ID field shows the original owner of the disk if the original owner is a controller on the disaster site.

    This is required if both of the following are true:

  9. If your system is in a MetroCluster configuration, verify that each controller is configured: metrocluster node show - fields configuration-state

    node1_siteA::> metrocluster node show -fields configuration-state
    
    dr-group-id            cluster node           configuration-state
    -----------            ---------------------- -------------- -------------------
    1 node1_siteA          node1mcc-001           configured
    1 node1_siteA          node1mcc-002           configured
    1 node1_siteB          node1mcc-003           configured
    1 node1_siteB          node1mcc-004           configured
    
    4 entries were displayed.
  10. Verify that the expected volumes are present for each controller: vol show -node node-name

  11. If you disabled automatic takeover on reboot, enable it from the healthy controller: storage failover modify -node replacement-node-name -onreboot true

Step 7: Restore Storage and Volume Encryption functionality

After replacing the controller module or NVRAM module for a storage system that you previously configured to use Storage or Volume Encryption, you must perform additional steps to provide uninterrupted Encryption functionality. You can skip this task on storage systems that do not have Storage or Volume Encryption enabled.

Step
  1. Restore Storage or Volume Encryption functionality by using the appropriate procedure in NetApp Encryption overview with the CLI.

  2. Use one of the following procedures, depending on whether you are using onboard or external key management:

Step 8: Return the failed part to NetApp

Return the failed part to NetApp, as described in the RMA instructions shipped with the kit. See the Part Return & Replacements page for further information.