• Artificial intelligence solutions
  • What's new
  • AI converged infrastructures
    • NetApp AIPod with NVIDIA DGX systems
      • Introduction
      • Hardware components
      • Software components
      • Architecture
      • Example deployment details
      • Validation and sizing guidance
      • Conclusion and additional information
    • NetApp AIPod with Lenovo for NVIDIA OVX
    • NVIDIA DGX SuperPOD with EF-Series
    • BeeGFS on NetApp with E-Series storage
    • Deploy IBM Spectrum Scale with E-Series storage
    • ONTAP and Lenovo ThinkSystem for AI
  • MLOps and data management
    • Open Source MLOps with NetApp
      • Introduction
      • Technology overview
      • Architecture
      • NetApp Trident configuration
        • Trident backends for AIPod deployments
        • Kubernetes StorageClasses for AIPod deployments
      • Apache Airflow
        • Apache Airflow deployment
        • Use the NetApp DataOps Toolkit with Airflow
      • JupyterHub
        • JupyterHub deployment
        • Use the NetApp DataOps Toolkit with JupyterHub
        • Ingest data with NetApp SnapMirror
      • MLflow
        • MLflow deployment
        • Dataset-to-model traceability with NetApp and MLflow
      • Kubeflow
        • Kubeflow deployment
        • Provision Jupyter Notebook workspace
        • Use the NetApp DataOps Toolkit with Kubeflow
        • Train an image recognition model - example workflow
      • Example Trident operations
      • Example high-performance jobs for AIPod deployments
        • Execute a single-node AI workload
        • Execute a synchronous distributed AI workload
    • Hybrid MLOps with Domino Data Lab and NetApp
      • Introduction
      • Technology overview
      • Architecture
      • Initial setup
      • Expose existing NetApp volumes to Domino
      • Access the same data across different environments
      • Additional information
    • NVIDIA AI Enterprise with NetApp and VMware
      • Introduction
      • Technology overview
      • Architecture
      • Initial setup
      • Use NVIDIA NGC software
        • Setup
        • Use case example - TensorFlow Training Job
      • Additional information
    • FSx ONTAP for MLOps
      • Overview
      • Part 1 - Integrate Amazon FSx for NetApp ONTAP as a private S3 bucket into AWS SageMaker
      • Part 2 - Leverage Amazon FSx for NetApp ONTAP as a data source for model training in SageMaker
      • Part 3 - Build a simplified MLOps pipeline
    • StorageGRID data lake for autonomous driving
    • NetApp DataOps Toolkit
    • Vector database solution with NetApp
      • Overview
      • Introduction
      • Solution overview
      • Vector database
      • Technology requirement
      • Deployment procedure
      • Solution verification
        • Overview
        • Milvus cluster setup with Kubernetes in on-premises
        • Milvus with Amazon FSx ONTAP for NetApp ONTAP – file and object duality
        • Vector database protection using SnapCenter
        • Disaster recovery using SnapMirror
        • Performance validation
      • Vector database with Instaclustr using PostGreSQL: pgvector
      • Vector database use cases
      • Conclusion
      • Appendix A: values.yaml
      • Appendix B: prepare_data_netapp_new_py
      • Appendix C: verify_data_netapp.py
      • Appendix D: docker_compose.yml
  • AI use cases
    • NetApp AIPod Mini for enterprise RAG
    • Responsible AI with Protopia image transformation
      • Overview
      • Solution areas
      • Technology overview
      • Test and validation plan
      • Test configuration
      • Test procedure
      • Inferencing accuracy comparison
      • Obfuscation speed
      • Conclusion
      • Additional information
    • Big data analytics to AI migration
    • Edge AI inferencing with NetApp and Lenovo
      • Introduction
      • Conclusion
    • Generative AI and NetApp value
    • Design Quantum StorNext with E-Series systems
    • Deploy Quantum StorNext with E-Series systems
  • Modern data analytics
    • Cloud Data Management with NetApp File-Object Duality and AWS SageMaker
      • Solution overview
      • Solution technology
      • Data duality for data scientists and other applications
      • Conclusion
    • Apache Kafka workloads with NetApp NFS storage
      • Introduction
      • NetApp solution for silly rename issue in NFS to Kafka workload
      • Functional validation - Silly rename fix
      • Why NetApp NFS for Kafka workloads?
      • Performance overview and validation in AWS - Cloud Volume ONTAP
      • Performance overview and validation in AWS - FSx for NetApp ONTAP
      • Performance overview and validation with AFF on-premises
      • Conclusion
      • Where to find additional information
    • Confluent Kafka with NetApp ONTAP storage controllers
      • Overview
      • Solution
      • Technology overview
      • Confluent performance validation
      • Performance tests with produce-consume workload generator
      • Performance best practice guidelines
      • Conclusion
    • NetApp storage solutions for Apache Spark
      • Solution overview
      • Target audience
      • Solution technology
      • NetApp Spark solutions overview
      • Use cases summary
      • Major AI, ML, and DL use cases and architectures
      • Testing results
      • Hybrid cloud solution
      • Python scripts for each major use case
      • Conclusion
      • Where to find additional information
    • Big Data Analytics Data to Artificial Intelligence
      • Introduction
      • Customer challenges
      • Data mover solution
      • Data mover solution for AI
      • GPFS to NetApp ONTAP NFS
      • HDFS and MapR-FS to ONTAP NFS
      • Business benefits
      • GPFS to NFS - Detailed steps
      • MapR-FS to ONTAP NFS
      • Additional information
    • Best practices for Confluent Kafka
      • Introduction
      • Solution architecture details
      • Technology overview
      • Confluent verification
      • Performance tests with scalability
      • Confluent s3 connector
      • Confluent self-rebalancing clusters
      • Best practice guidelines
      • Sizing
      • Conclusion
    • NetApp hybrid cloud data solutions - Spark and Hadoop based on customer use cases
      • Solution overview
      • Data fabric powered by NetApp for big data architecture
      • Hadoop data protection and NetApp
      • Overview of Hadoop data protection use cases
      • Use case 1 - Backing up Hadoop data
      • Use case 2 - Backup and disaster recovery from the cloud to on-premises
      • Use case 3 - Enabling DevTest on existing Hadoop data
      • Use case 4 - Data protection and multicloud connectivity
      • Use case 5 - Accelerate analytic workloads
      • Conclusion
    • NetApp and Dremio's next generation hybrid iceberg lakehouse solution
      • Introduction
      • Solution overview
      • Technology requirements
      • Deployment procedure
      • Solution verification overview
      • Customer use cases
      • Conclusion
    • Different solutions for different analytics strategies
    • NetApp StorageGRID with Splunk SmartStore
      • Introduction
      • Solution overview
      • Benefits of this solution
      • Splunk architecture
      • StorageGRID Features for Splunk SmartStore
      • Tiering and cost savings
      • Single Site SmartStore Performance
      • Conclusion
    • NetApp E-Series E5700 and Splunk Enterprise
    • Deploy Apache Spark workload with NetApp storage
  • Videos
  • Blogs
  • Legal notices