Skip to main content
NetApp Solutions
Se proporciona el idioma español mediante traducción automática para su comodidad. En caso de alguna inconsistencia, el inglés precede al español.

Dualidad de datos para científicos de datos y otras aplicaciones

Colaboradores

Los datos están disponibles en NFS y se accede a ellos desde S3 desde AWS SageMaker.

Requisitos tecnológicos

Necesitas BlueXP de NetApp, NetApp Cloud Volumes ONTAP y AWS SageMaker Notebooks para el caso práctico de dualidad de datos.

Requisitos de software

En la siguiente tabla se enumeran los componentes de software necesarios para implementar el caso de uso.

De NetApp Cantidad

BlueXP

1

Cloud Volumes ONTAP de NetApp

1

Portátil de AWS SageMaker

1

Procedimientos de implantación

La implementación de una solución de dualidad de datos implica las siguientes tareas:

  • Conector BlueXP

  • Cloud Volumes ONTAP de NetApp

  • Datos para el aprendizaje automático

  • SageMaker de AWS

  • Aprendizaje automático validado de Jupyter Notebooks

Conector de BlueXP

En esta validación, utilizamos AWS. También es aplicable a Azure y Google Cloud. Para crear un conector BlueXP en AWS, complete los siguientes pasos:

  1. Hemos utilizado las credenciales basadas en la suscripción-mcarl-marketplace en BlueXP.

  2. Elija la región adecuada para su entorno (por ejemplo, us-east-1 [N. Virginia]) y seleccione el método de autenticación (por ejemplo, asuma el rol o las claves de AWS). En esta validación, utilizamos claves de AWS.

  3. Proporcione el nombre del conector y cree un rol.

  4. Proporcione los detalles de la red, como el VPC, la subred o el par de claves, dependiendo de si necesita una IP pública o no.

  5. Proporcione los detalles del grupo de seguridad, como el acceso HTTP, HTTPS o SSH desde el tipo de origen, como la información en cualquier lugar y el rango de IP.

  6. Revisa y crea BlueXP Connector.

  7. Compruebe que el estado de la instancia de BlueXP EC2 se esté ejecutando en la consola de AWS y compruebe la dirección IP en la pestaña Networking.

  8. Inicie sesión en la interfaz de usuario del conector en el portal de BlueXP o puede usar la dirección IP para acceder desde el explorador.

Cloud Volumes ONTAP de NetApp

Para crear una instancia de Cloud Volumes ONTAP en BlueXP, complete los pasos siguientes:

  1. Crear un nuevo entorno de trabajo, seleccionar el proveedor de cloud y seleccionar el tipo de instancia de Cloud Volumes ONTAP (como CVO único, alta disponibilidad o Amazon FSx ONTAP para ONTAP).

  2. Proporcione detalles como el nombre del clúster de Cloud Volumes ONTAP y las credenciales. En esta validación, creamos una instancia de Cloud Volumes ONTAP llamada svm_sagemaker_cvo_sn1.

  3. Seleccione los servicios necesarios para Cloud Volumes ONTAP. En esta validación, elegimos solo monitorear, por lo que deshabilitamos Data Sense & Compliance y Backup to Cloud Services.

  4. En la sección Ubicación y conectividad, seleccione la región de AWS, VPC, subred, grupo de seguridad, método de autenticación SSH, y una contraseña o un par de claves.

  5. Elija el método de carga. Utilizamos Professional para esta validación.

  6. Puede elegir un paquete preconfigurado, como POC y cargas de trabajo pequeñas, Cargas de trabajo de producción de datos de aplicaciones y bases de datos, DR rentable o Cargas de trabajo de producción de máximo rendimiento. En esta validación, elegimos POC y pequeñas cargas de trabajo.

  7. Cree un volumen con un tamaño específico, protocolos permitidos y opciones de exportación. En esta validación, creamos un volumen denominado vol1.

  8. Seleccione un tipo de disco de perfil y una política de organización en niveles. En esta validación, desactivamos Eficiencia de almacenamiento y SSD de propósito general – Rendimiento dinámico.

  9. Finalmente, revise y cree la instancia de Cloud Volumes ONTAP. Después, espera 15-20 minutos para que BlueXP cree el entorno de trabajo de Cloud Volumes ONTAP.

  10. Configure los siguientes parámetros para activar el protocolo de dualidad. ONTAP 9 admite el protocolo de dualidad (nfs/S3). 12,1 y posterior.

    1. En esta validación, creamos una SVM llamada svm_sagemaker_cvo_sn1 y volumen vol1.

    2. Compruebe que la SVM admite el protocolo para NFS y S3. De lo contrario, modifique la SVM para que la admita.

      sagemaker_cvo_sn1::> vserver show -vserver svm_sagemaker_cvo_sn1
                                          Vserver: svm_sagemaker_cvo_sn1
                                     Vserver Type: data
                                  Vserver Subtype: default
                                     Vserver UUID: 911065dd-a8bc-11ed-bc24-e1c0f00ad86b
                                      Root Volume: svm_sagemaker_cvo_sn1_root
                                        Aggregate: aggr1
                                       NIS Domain: -
                       Root Volume Security Style: unix
                                      LDAP Client: -
                     Default Volume Language Code: C.UTF-8
                                  Snapshot Policy: default
                                    Data Services: data-cifs, data-flexcache,
                                                   data-iscsi, data-nfs,
                                                   data-nvme-tcp
                                          Comment:
                                     Quota Policy: default
                      List of Aggregates Assigned: aggr1
       Limit on Maximum Number of Volumes allowed: unlimited
                              Vserver Admin State: running
                        Vserver Operational State: running
         Vserver Operational State Stopped Reason: -
                                Allowed Protocols: nfs, cifs, fcp, iscsi, ndmp, s3
                             Disallowed Protocols: nvme
                  Is Vserver with Infinite Volume: false
                                 QoS Policy Group: -
                              Caching Policy Name: -
                                      Config Lock: false
                                     IPspace Name: Default
                               Foreground Process: -
                          Logical Space Reporting: true
                        Logical Space Enforcement: false
      Default Anti_ransomware State of the Vserver's Volumes: disabled
                  Enable Analytics on New Volumes: false
          Enable Activity Tracking on New Volumes: false
      
      sagemaker_cvo_sn1::>
  11. Cree e instale un certificado de CA si es necesario.

  12. Cree una política de datos de servicio.

    sagemaker_cvo_sn1::*> network interface service-policy create -vserver svm_sagemaker_cvo_sn1 -policy sagemaker_s3_nfs_policy -services data-core,data-s3-server,data-nfs,data-flexcache
    sagemaker_cvo_sn1::*> network interface create -vserver svm_sagemaker_cvo_sn1 -lif svm_sagemaker_cvo_sn1_s3_lif -service-policy sagemaker_s3_nfs_policy -home-node sagemaker_cvo_sn1-01 -address 172.30.10.41 -netmask 255.255.255.192
    
    Warning: The configured failover-group has no valid failover targets for the LIF's failover-policy. To view the failover targets for a LIF, use
             the "network interface show -failover" command.
    
    sagemaker_cvo_sn1::*>
    sagemaker_cvo_sn1::*> network interface show
    Logical    Status     Network            Current       Current Is
    Vserver     Interface  Admin/Oper Address/Mask       Node          Port    Home
    ----------- ---------- ---------- ------------------ ------------- ------- ----
    sagemaker_cvo_sn1
                cluster-mgmt up/up    172.30.10.40/26    sagemaker_cvo_sn1-01
                                                                       e0a     true
                intercluster up/up    172.30.10.48/26    sagemaker_cvo_sn1-01
                                                                       e0a     true
                sagemaker_cvo_sn1-01_mgmt1
                             up/up    172.30.10.58/26    sagemaker_cvo_sn1-01
                                                                       e0a     true
    svm_sagemaker_cvo_sn1
                svm_sagemaker_cvo_sn1_data_lif
                             up/up    172.30.10.23/26    sagemaker_cvo_sn1-01
                                                                       e0a     true
                svm_sagemaker_cvo_sn1_mgmt_lif
                             up/up    172.30.10.32/26    sagemaker_cvo_sn1-01
                                                                       e0a     true
                svm_sagemaker_cvo_sn1_s3_lif
                             up/up    172.30.10.41/26    sagemaker_cvo_sn1-01
                                                                       e0a     true
    6 entries were displayed.
    
    sagemaker_cvo_sn1::*>
    sagemaker_cvo_sn1::*> vserver object-store-server create -vserver svm_sagemaker_cvo_sn1  -is-http-enabled true -object-store-server svm_sagemaker_cvo_s3_sn1 -is-https-enabled false
    sagemaker_cvo_sn1::*> vserver object-store-server show
    
    Vserver: svm_sagemaker_cvo_sn1
    
               Object Store Server Name: svm_sagemaker_cvo_s3_sn1
                   Administrative State: up
                           HTTP Enabled: true
                 Listener Port For HTTP: 80
                          HTTPS Enabled: false
         Secure Listener Port For HTTPS: 443
      Certificate for HTTPS Connections: -
                      Default UNIX User: pcuser
                   Default Windows User: -
                                Comment:
    
    sagemaker_cvo_sn1::*>
  13. Consulte los detalles del agregado.

    sagemaker_cvo_sn1::*> aggr show
    
    
    Aggregate     Size Available Used% State   #Vols  Nodes            RAID Status
    --------- -------- --------- ----- ------- ------ ---------------- ------------
    aggr0_sagemaker_cvo_sn1_01
               124.0GB   50.88GB   59% online       1 sagemaker_cvo_   raid0,
                                                      sn1-01           normal
    aggr1      907.1GB   904.9GB    0% online       2 sagemaker_cvo_   raid0,
                                                      sn1-01           normal
    2 entries were displayed.
    
    sagemaker_cvo_sn1::*>
  14. Cree un usuario y un grupo.

    sagemaker_cvo_sn1::*> vserver object-store-server user create -vserver svm_sagemaker_cvo_sn1 -user s3user
    
    sagemaker_cvo_sn1::*> vserver object-store-server user show
    Vserver     User            ID        Access Key          Secret Key
    ----------- --------------- --------- ------------------- -------------------
    svm_sagemaker_cvo_sn1
                root            0         -                   -
       Comment: Root User
    svm_sagemaker_cvo_sn1
                s3user          1         0ZNAX21JW5Q8AP80CQ2E
                                                              PpLs4gA9K0_2gPhuykkp014gBjcC9Rbi3QDX_6rr
    2 entries were displayed.
    
    sagemaker_cvo_sn1::*>
    
    
    sagemaker_cvo_sn1::*> vserver object-store-server group create -name s3group -users s3user -comment ""
    
    sagemaker_cvo_sn1::*>
    sagemaker_cvo_sn1::*> vserver object-store-server group delete -gid 1 -vserver svm_sagemaker_cvo_sn1
    
    sagemaker_cvo_sn1::*> vserver object-store-server group create -name s3group -users s3user -comment "" -policies FullAccess
    
    sagemaker_cvo_sn1::*>
  15. Cree un bucket en el volumen de NFS.

    sagemaker_cvo_sn1::*> vserver object-store-server bucket create -bucket ontapbucket1 -type nas -comment "" -vserver svm_sagemaker_cvo_sn1 -nas-path /vol1
    sagemaker_cvo_sn1::*> vserver object-store-server bucket show
    Vserver     Bucket          Type     Volume            Size       Encryption Role       NAS Path
    ----------- --------------- -------- ----------------- ---------- ---------- ---------- ----------
    svm_sagemaker_cvo_sn1
                ontapbucket1    nas      vol1              -          false      -          /vol1
    sagemaker_cvo_sn1::*>

SageMaker de AWS

Para crear un bloc de notas de AWS desde AWS SageMaker, lleve a cabo los siguientes pasos:

  1. Asegúrese de que el usuario que está creando una instancia de Notebook tiene una política de IAM de AmazonSageMakerFullAccess o forma parte de un grupo existente que tiene derechos de AmazonSageMakerFullAccess. En esta validación, el usuario forma parte de un grupo existente.

  2. Proporcione la siguiente información:

    • Nombre de la instancia del bloc de notas

    • Tipo de instancia.

    • Identificador de plataforma.

    • Seleccione el rol de IAM que tiene derechos de AmazonSageMakerFullAccess.

    • Acceso a raíz: Habilitar.

    • Clave de cifrado: Seleccione sin cifrado personalizado.

    • Mantenga las opciones predeterminadas restantes.

  3. En esta validación, los detalles de la instancia de SageMaker son los siguientes:

    Captura de pantalla que muestra el paso.

    Captura de pantalla que muestra el paso.

  4. Inicie el portátil de AWS.

    Captura de pantalla que muestra el paso.

  5. Abra el laboratorio Jupyter.

    Captura de pantalla que muestra el paso.

  6. Inicie sesión en el terminal y monte el volumen Cloud Volumes ONTAP.

    sh-4.2$ sudo mkdir /vol1; sudo mount -t nfs 172.30.10.41:/vol1 /vol1
    sh-4.2$ df -h
    Filesystem          Size  Used Avail Use% Mounted on
    devtmpfs            2.0G     0  2.0G   0% /dev
    tmpfs               2.0G     0  2.0G   0% /dev/shm
    tmpfs               2.0G  624K  2.0G   1% /run
    tmpfs               2.0G     0  2.0G   0% /sys/fs/cgroup
    /dev/xvda1          140G  114G   27G  82% /
    /dev/xvdf           4.8G   72K  4.6G   1% /home/ec2-user/SageMaker
    tmpfs               393M     0  393M   0% /run/user/1001
    tmpfs               393M     0  393M   0% /run/user/1002
    tmpfs               393M     0  393M   0% /run/user/1000
    172.30.10.41:/vol1  973M  189M  785M  20% /vol1
    sh-4.2$
  7. Compruebe el bloque creado en el volumen de Cloud Volumes ONTAP con los comandos de la CLI de AWS.

    sh-4.2$ aws configure --profile netapp
    AWS Access Key ID [None]: 0ZNAX21JW5Q8AP80CQ2E
    AWS Secret Access Key [None]: PpLs4gA9K0_2gPhuykkp014gBjcC9Rbi3QDX_6rr
    Default region name [None]: us-east-1
    Default output format [None]:
    sh-4.2$
    
    sh-4.2$ aws s3 ls --profile netapp --endpoint-url
    2023-02-10 17:59:48 ontapbucket1
    
    sh-4.2$ aws s3 ls --profile netapp --endpoint-url  s3://ontapbucket1/
    
    
    2023-02-10 18:46:44       4747 1
    2023-02-10 18:48:32         96 setup.cfg
    
    sh-4.2$

Datos para el aprendizaje automático

En esta validación, utilizamos un conjunto de datos de DBpedia, un esfuerzo comunitario de fuentes múltiples, para extraer contenido estructurado de la información creada en varios proyectos de Wikimedia.

  1. Descargue los datos de la ubicación de DBpedia GitHub y extráigalos. Utilice el mismo terminal utilizado en la sección anterior.

    sh-4.2$ wget
    --2023-02-14 23:12:11--
    Resolving github.com (github.com)... 140.82.113.3
    Connecting to github.com (github.com)|140.82.113.3|:443... connected.
    HTTP request sent, awaiting response... 302 Found
    Location:  [following]
    --2023-02-14 23:12:11--
    Resolving raw.githubusercontent.com (raw.githubusercontent.com)... 185.199.109.133, 185.199.110.133, 185.199.111.133, ...
    Connecting to raw.githubusercontent.com (raw.githubusercontent.com)|185.199.109.133|:443... connected.
    HTTP request sent, awaiting response... 200 OK
    Length: 68431223 (65M) [application/octet-stream]
    Saving to: ‘dbpedia_csv.tar.gz’
    
    100%[==============================================================================================================================================================>] 68,431,223  56.2MB/s   in 1.2s
    
    2023-02-14 23:12:13 (56.2 MB/s) - ‘dbpedia_csv.tar.gz’ saved [68431223/68431223]
    
    sh-4.2$ tar -zxvf dbpedia_csv.tar.gz
    dbpedia_csv/
    dbpedia_csv/test.csv
    dbpedia_csv/classes.txt
    dbpedia_csv/train.csv
    dbpedia_csv/readme.txt
    sh-4.2$
  2. Copie los datos en la ubicación de Cloud Volumes ONTAP y compruébalos desde el bloque de S3 mediante la interfaz de línea de comandos de AWS.

    sh-4.2$ df -h
    Filesystem          Size  Used Avail Use% Mounted on
    devtmpfs            2.0G     0  2.0G   0% /dev
    tmpfs               2.0G     0  2.0G   0% /dev/shm
    tmpfs               2.0G  628K  2.0G   1% /run
    tmpfs               2.0G     0  2.0G   0% /sys/fs/cgroup
    /dev/xvda1          140G  114G   27G  82% /
    /dev/xvdf           4.8G   52K  4.6G   1% /home/ec2-user/SageMaker
    tmpfs               393M     0  393M   0% /run/user/1002
    tmpfs               393M     0  393M   0% /run/user/1001
    tmpfs               393M     0  393M   0% /run/user/1000
    172.30.10.41:/vol1  973M  384K  973M   1% /vol1
    sh-4.2$ pwd
    /home/ec2-user
    sh-4.2$ cp -ra dbpedia_csv /vol1
    sh-4.2$ aws s3 ls --profile netapp --endpoint-url  s3://ontapbucket1/
                               PRE dbpedia_csv/
    2023-02-10 18:46:44       4747 1
    2023-02-10 18:48:32         96 setup.cfg
    sh-4.2$
  3. Realizar una validación básica para asegurarse de que la funcionalidad de lectura/escritura funciona en el bloque de S3.

    sh-4.2$ aws s3 cp  --profile netapp --endpoint-url  /usr/share/doc/util-linux-2.30.2 s3://ontapbucket1/ --recursive
    upload: ../../../usr/share/doc/util-linux-2.30.2/deprecated.txt to s3://ontapbucket1/deprecated.txt
    upload: ../../../usr/share/doc/util-linux-2.30.2/getopt-parse.bash to s3://ontapbucket1/getopt-parse.bash
    upload: ../../../usr/share/doc/util-linux-2.30.2/README to s3://ontapbucket1/README
    upload: ../../../usr/share/doc/util-linux-2.30.2/getopt-parse.tcsh to s3://ontapbucket1/getopt-parse.tcsh
    upload: ../../../usr/share/doc/util-linux-2.30.2/AUTHORS to s3://ontapbucket1/AUTHORS
    upload: ../../../usr/share/doc/util-linux-2.30.2/NEWS to s3://ontapbucket1/NEWS
    sh-4.2$ aws s3 ls --profile netapp --endpoint-url  s3://ontapbucket1/s3://ontapbucket1/
    
    An error occurred (InternalError) when calling the ListObjectsV2 operation: We encountered an internal error. Please try again.
    sh-4.2$ aws s3 ls --profile netapp --endpoint-url  s3://ontapbucket1/
                               PRE dbpedia_csv/
    2023-02-16 19:19:27      26774 AUTHORS
    2023-02-16 19:19:27      72727 NEWS
    2023-02-16 19:19:27       4493 README
    2023-02-16 19:19:27       2825 deprecated.txt
    2023-02-16 19:19:27       1590 getopt-parse.bash
    2023-02-16 19:19:27       2245 getopt-parse.tcsh
    sh-4.2$ ls -ltr /vol1
    total 132
    drwxrwxr-x 2 ec2-user ec2-user  4096 Mar 29  2015 dbpedia_csv
    -rw-r--r-- 1 nobody   nobody    2245 Apr 10 17:37 getopt-parse.tcsh
    -rw-r--r-- 1 nobody   nobody    2825 Apr 10 17:37 deprecated.txt
    -rw-r--r-- 1 nobody   nobody    4493 Apr 10 17:37 README
    -rw-r--r-- 1 nobody   nobody    1590 Apr 10 17:37 getopt-parse.bash
    -rw-r--r-- 1 nobody   nobody   26774 Apr 10 17:37 AUTHORS
    -rw-r--r-- 1 nobody   nobody   72727 Apr 10 17:37 NEWS
    sh-4.2$ ls -ltr /vol1/dbpedia_csv/
    total 192104
    -rw------- 1 ec2-user ec2-user 174148970 Mar 28  2015 train.csv
    -rw------- 1 ec2-user ec2-user  21775285 Mar 28  2015 test.csv
    -rw------- 1 ec2-user ec2-user       146 Mar 28  2015 classes.txt
    -rw-rw-r-- 1 ec2-user ec2-user      1758 Mar 29  2015 readme.txt
    sh-4.2$ chmod -R 777 /vol1/dbpedia_csv
    sh-4.2$ ls -ltr /vol1/dbpedia_csv/
    total 192104
    -rwxrwxrwx 1 ec2-user ec2-user 174148970 Mar 28  2015 train.csv
    -rwxrwxrwx 1 ec2-user ec2-user  21775285 Mar 28  2015 test.csv
    -rwxrwxrwx 1 ec2-user ec2-user       146 Mar 28  2015 classes.txt
    -rwxrwxrwx 1 ec2-user ec2-user      1758 Mar 29  2015 readme.txt
    sh-4.2$ aws s3 cp --profile netapp --endpoint-url http://172.30.2.248/ s3://ontapbucket1/ /tmp --recursive
    download: s3://ontapbucket1/AUTHORS to ../../tmp/AUTHORS
    download: s3://ontapbucket1/README to ../../tmp/README
    download: s3://ontapbucket1/NEWS to ../../tmp/NEWS
    download: s3://ontapbucket1/dbpedia_csv/classes.txt to ../../tmp/dbpedia_csv/classes.txt
    download: s3://ontapbucket1/dbpedia_csv/readme.txt to ../../tmp/dbpedia_csv/readme.txt
    download: s3://ontapbucket1/deprecated.txt to ../../tmp/deprecated.txt
    download: s3://ontapbucket1/getopt-parse.bash to ../../tmp/getopt-parse.bash
    download: s3://ontapbucket1/getopt-parse.tcsh to ../../tmp/getopt-parse.tcsh
    download: s3://ontapbucket1/dbpedia_csv/test.csv to ../../tmp/dbpedia_csv/test.csv
    download: s3://ontapbucket1/dbpedia_csv/train.csv to ../../tmp/dbpedia_csv/train.csv
    sh-4.2$
    sh-4.2$ aws s3 ls --profile netapp --endpoint-url  s3://ontapbucket1/
                               PRE dbpedia_csv/
    2023-02-16 19:19:27      26774 AUTHORS
    2023-02-16 19:19:27      72727 NEWS
    2023-02-16 19:19:27       4493 README
    2023-02-16 19:19:27       2825 deprecated.txt
    2023-02-16 19:19:27       1590 getopt-parse.bash
    2023-02-16 19:19:27       2245 getopt-parse.tcsh
    sh-4.2$

Validación del aprendizaje automático de Jupyter Notebooks

La siguiente validación proporciona los modelos de creación, formación e implementación de aprendizaje automático a través de la clasificación de texto mediante el ejemplo de SageMaker BlazingText que aparece a continuación:

  1. Instale los paquetes boto3 y SageMaker.

    In [1]:  pip install --upgrade boto3 sagemaker

    Salida:

    Looking in indexes: https://pypi.org/simple, https://pip.repos.neuron.amazo naws.com
    Requirement already satisfied: boto3 in /home/ec2-user/anaconda3/envs/pytho n3/lib/python3.10/site-packages (1.26.44)
    Collecting boto3
      Downloading boto3-1.26.72-py3-none-any.whl (132 kB)
         ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 132.7/132.7 kB 14.6 MB/s eta 0: 00:00
    Requirement already satisfied: sagemaker in /home/ec2-user/anaconda3/envs/p ython3/lib/python3.10/site-packages (2.127.0)
    Collecting sagemaker
      Downloading sagemaker-2.132.0.tar.gz (668 kB)
         ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 668.0/668.0 kB 12.3 MB/s eta 0:
    00:0000:01
      Preparing metadata (setup.py) ... done
    Collecting botocore<1.30.0,>=1.29.72
      Downloading botocore-1.29.72-py3-none-any.whl (10.4 MB)
         ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 10.4/10.4 MB 44.3 MB/s eta 0: 00:0000:010:01
    Requirement already satisfied: s3transfer<0.7.0,>=0.6.0 in /home/ec2-user/a naconda3/envs/python3/lib/python3.10/site-packages (from boto3) (0.6.0)
    Requirement already satisfied: jmespath<2.0.0,>=0.7.1 in /home/ec2-user/ana conda3/envs/python3/lib/python3.10/site-packages (from boto3) (0.10.0)
    Requirement already satisfied: attrs<23,>=20.3.0 in /home/ec2-user/anaconda
    3/envs/python3/lib/python3.10/site-packages (from sagemaker) (22.1.0)
    Requirement already satisfied: google-pasta in /home/ec2-user/anaconda3/env s/python3/lib/python3.10/site-packages (from sagemaker) (0.2.0)
    Requirement already satisfied: numpy<2.0,>=1.9.0 in /home/ec2-user/anaconda
    3/envs/python3/lib/python3.10/site-packages (from sagemaker) (1.22.4)
    Requirement already satisfied: protobuf<4.0,>=3.1 in /home/ec2-user/anacond a3/envs/python3/lib/python3.10/site-packages (from sagemaker) (3.20.3)
    Requirement already satisfied: protobuf3-to-dict<1.0,>=0.1.5 in /home/ec2-u ser/anaconda3/envs/python3/lib/python3.10/site-packages (from sagemaker)
    (0.1.5)
    Requirement already satisfied: smdebug_rulesconfig==1.0.1 in /home/ec2-use r/anaconda3/envs/python3/lib/python3.10/site-packages (from sagemaker) (1.
    0.1) Requirement already satisfied: importlib-metadata<5.0,>=1.4.0 in /home/ec2user/anaconda3/envs/python3/lib/python3.10/site-packages (from sagemaker)
    (4.13.0)
    Requirement already satisfied: packaging>=20.0 in /home/ec2-user/anaconda3/ envs/python3/lib/python3.10/site-packages (from sagemaker) (21.3)
    Requirement already satisfied: pandas in /home/ec2-user/anaconda3/envs/pyth on3/lib/python3.10/site-packages (from sagemaker) (1.5.1)
    Requirement already satisfied: pathos in /home/ec2-user/anaconda3/envs/pyth on3/lib/python3.10/site-packages (from sagemaker) (0.3.0)
    Requirement already satisfied: schema in /home/ec2-user/anaconda3/envs/pyth on3/lib/python3.10/site-packages (from sagemaker) (0.7.5) Requirement already satisfied: python-dateutil<3.0.0,>=2.1 in /home/ec2-use r/anaconda3/envs/python3/lib/python3.10/site-packages (from botocore<1.30.
    0,>=1.29.72->boto3) (2.8.2)
    Requirement already satisfied: urllib3<1.27,>=1.25.4 in /home/ec2-user/anac onda3/envs/python3/lib/python3.10/site-packages (from botocore<1.30.0,>=1.2
    9.72->boto3) (1.26.8) Requirement already satisfied: zipp>=0.5 in /home/ec2-user/anaconda3/envs/p ython3/lib/python3.10/site-packages (from importlib-metadata<5.0,>=1.4.0->s agemaker) (3.10.0)
    Requirement already satisfied: pyparsing!=3.0.5,>=2.0.2 in /home/ec2-user/a naconda3/envs/python3/lib/python3.10/site-packages (from packaging>=20.0->s agemaker) (3.0.9)
    Requirement already satisfied: six in /home/ec2-user/anaconda3/envs/python
    3/lib/python3.10/site-packages (from protobuf3-to-dict<1.0,>=0.1.5->sagemak er) (1.16.0)
    Requirement already satisfied: pytz>=2020.1 in /home/ec2-user/anaconda3/env s/python3/lib/python3.10/site-packages (from pandas->sagemaker) (2022.5)
    Requirement already satisfied: ppft>=1.7.6.6 in /home/ec2-user/anaconda3/en vs/python3/lib/python3.10/site-packages (from pathos->sagemaker) (1.7.6.6) Requirement already satisfied: multiprocess>=0.70.14 in /home/ec2-user/anac onda3/envs/python3/lib/python3.10/site-packages (from pathos->sagemaker)
    (0.70.14)
    Requirement already satisfied: dill>=0.3.6 in /home/ec2-user/anaconda3/env s/python3/lib/python3.10/site-packages (from pathos->sagemaker) (0.3.6)
    Requirement already satisfied: pox>=0.3.2 in /home/ec2-user/anaconda3/envs/ python3/lib/python3.10/site-packages (from pathos->sagemaker) (0.3.2) Requirement already satisfied: contextlib2>=0.5.5 in /home/ec2-user/anacond a3/envs/python3/lib/python3.10/site-packages (from schema->sagemaker) (21.
    6.0) Building wheels for collected packages: sagemaker
      Building wheel for sagemaker (setup.py) ... done
      Created wheel for sagemaker: filename=sagemaker-2.132.0-py2.py3-none-any. whl size=905449 sha256=f6100a5dc95627f2e2a49824e38f0481459a27805ee19b5a06ec
    83db0252fd41
      Stored in directory: /home/ec2-user/.cache/pip/wheels/60/41/b6/482e7ab096
    520df034fbf2dddd244a1d7ba0681b27ef45aa61
    Successfully built sagemaker
    Installing collected packages: botocore, boto3, sagemaker
      Attempting uninstall: botocore     Found existing installation: botocore 1.24.19
        Uninstalling botocore-1.24.19:       Successfully uninstalled botocore-1.24.19
      Attempting uninstall: boto3     Found existing installation: boto3 1.26.44
        Uninstalling boto3-1.26.44:
          Successfully uninstalled boto3-1.26.44
      Attempting uninstall: sagemaker     Found existing installation: sagemaker 2.127.0
        Uninstalling sagemaker-2.127.0:
          Successfully uninstalled sagemaker-2.127.0
    ERROR: pip's dependency resolver does not currently take into account all t he packages that are installed. This behaviour is the source of the followi ng dependency conflicts.
    awscli 1.27.44 requires botocore==1.29.44, but you have botocore 1.29.72 wh ich is incompatible.
    aiobotocore 2.0.1 requires botocore<1.22.9,>=1.22.8, but you have botocore 1.29.72 which is incompatible. Successfully installed boto3-1.26.72 botocore-1.29.72 sagemaker-2.132.0 Note: you may need to restart the kernel to use updated packages.
  2. En el siguiente paso, los datos (dbpedia_csv) se descarga del bloque de s3 ontapbucket1 A una instancia de Jupyter Notebook utilizada en el aprendizaje automático.

    In [2]: import sagemaker
    In [3]: from sagemaker import get_execution_role
    In [4]:
    import json
    import boto3
    sess = sagemaker.Session()
    role = get_execution_role()
    print(role)
    bucket = "ontapbucket1"
    print(bucket)
    sess.s3_client = boto3.client('s3',region_name='',aws_access_key_id = '0ZNAX21JW5Q8AP80CQ2E',  aws_secret_access_key = 'PpLs4gA9K0_2gPhuykkp014gBjcC9Rbi3QDX_6rr',
                                  use_ssl = False, endpoint_url = 'http://172.30.10.41',
                                  config=boto3.session.Config(signature_version='s3v4', s3={'addressing_style':'path'}) )
    sess.s3_resource = boto3.resource('s3',region_name='',aws_access_key_id = '0ZNAX21JW5Q8AP80CQ2E', aws_secret_access_key = 'PpLs4gA9K0_2gPhuykkp014gBjcC9Rbi3QDX_6rr',
                                  use_ssl = False, endpoint_url = 'http://172.30.10.41',
                                  config=boto3.session.Config(signature_version='s3v4', s3={'addressing_style':'path'}) )
    prefix = "blazingtext/supervised"
    import os
    my_bucket = sess.s3_resource.Bucket(bucket)
    my_bucket = sess.s3_resource.Bucket(bucket)
    #os.mkdir('dbpedia_csv')
    for s3_object in my_bucket.objects.all():
        filename = s3_object.key
    #    print(filename)
    #    print(s3_object.key)
        my_bucket.download_file(s3_object.key, filename)
  3. El siguiente código crea la asignación de índices enteros a etiquetas de clase que se utilizan para recuperar el nombre de clase real durante la inferencia.

    index_to_label = {}
    with open("dbpedia_csv/classes.txt") as f:
        for i,label in enumerate(f.readlines()):
            index_to_label[str(i + 1)] = label.strip()

    La salida muestra los archivos y carpetas de la ontapbucket1 Bucket que se utilizan como datos para la validación de aprendizaje automático de AWS SageMaker.

    arn:aws:iam::210811600188:role/SageMakerFullRole ontapbucket1
    AUTHORS
    AUTHORS
    NEWS
    NEWS
    README README
    dbpedia_csv/classes.txt dbpedia_csv/classes.txt dbpedia_csv/readme.txt dbpedia_csv/readme.txt dbpedia_csv/test.csv dbpedia_csv/test.csv dbpedia_csv/train.csv dbpedia_csv/train.csv deprecated.txt deprecated.txt getopt-parse.bash getopt-parse.bash getopt-parse.tcsh getopt-parse.tcsh
    In [5]: ls
    AUTHORS       deprecated.txt     getopt-parse.tcsh  NEWS    Untitled.ipynb dbpedia_csv/  getopt-parse.bash  lost+found/        README
    In [6]: ls -l dbpedia_csv
    total 191344
    -rw-rw-r-- 1 ec2-user ec2-user       146 Feb 16 19:43 classes.txt
    -rw-rw-r-- 1 ec2-user ec2-user      1758 Feb 16 19:43 readme.txt
    -rw-rw-r-- 1 ec2-user ec2-user  21775285 Feb 16 19:43 test.csv
    -rw-rw-r-- 1 ec2-user ec2-user 174148970 Feb 16 19:43 train.csv
  4. Inicie la fase de preprocesamiento de datos para preprocesar los datos de entrenamiento en un formato de texto tokenizado y separado por espacios que pueda consumir el algoritmo BlazingText y la biblioteca nltk para tokenizar las frases de entrada del conjunto de datos DBPedia. Descargue el tokenizer nltk y otras bibliotecas. La transform_instance Aplicado a cada instancia de datos en paralelo utiliza el módulo de multiprocesamiento de Python.

    ln [7]: from random import shuffle
    import multiprocessing
    from multiprocessing import Pool
    import csv
    import nltk
    nltk.download("punkt")
    def transform_instance(row):
        cur_row = []
        label ="__label__" + index_to_label [row[0]] # Prefix the index-ed label with __label__
        cur_row.append (label)
        cur_row.extend(nltk.word_tokenize(row[1].lower ()))
        cur_row.extend(nltk.word_tokenize(row[2].lower ()))
        return cur_row
    def preprocess(input_file, output_file, keep=1):
        all_rows = []
        with open(input_file,"r") as csvinfile:
            csv_reader = csv.reader(csvinfile, delimiter=",")
            for row in csv_reader:
                all_rows.append(row)
        shuffle(all_rows)
        all_rows = all_rows[: int(keep * len(all_rows))]
        pool = Pool(processes=multiprocessing.cpu_count())
        transformed_rows = pool.map(transform_instance, all_rows)
        pool.close()
        pool. join()
        with open(output_file, "w") as csvoutfile:
            csv_writer = csv.writer (csvoutfile, delimiter=" ", lineterminator="\n")
            csv_writer.writerows (transformed_rows)
    
    # Preparing the training dataset
    # since preprocessing the whole dataset might take a couple of minutes,
    # we keep 20% of the training dataset for this demo.
    # Set keep to 1 if you want to use the complete dataset
    preprocess("dbpedia_csv/train.csv","dbpedia.train", keep=0.2)
    # Preparing the validation dataset
    preprocess("dbpedia_csv/test.csv","dbpedia.validation")
    sess = sagemaker.Session()
    role = get_execution_role()
    print (role) # This is the role that sageMaker would use to leverage Aws resources (S3,  Cloudwatch) on your behalf
    bucket = sess.default_bucket() # Replace with your own bucket name if needed
    print("default Bucket::: ")
    print(bucket)

    Salida:

    [nltk_data] Downloading package punkt to /home/ec2-user/nltk_data...
    [nltk_data]   Package punkt is already up-to-date!
    arn:aws:iam::210811600188:role/SageMakerFullRole default Bucket::: sagemaker-us-east-1-210811600188
  5. Cargue el conjunto de datos formateado y de entrenamiento en S3 para que SageMaker pueda utilizarlo para ejecutar trabajos de entrenamiento. A continuación, cargue dos archivos en el depósito y coloque el prefijo utilizando el SDK de Python.

    ln [8]: %%time
    train_channel = prefix + "/train"
    validation_channel = prefix + "/validation"
    sess.upload_data(path="dbpedia.train", bucket=bucket, key_prefix=train_channel)
    sess.upload_data(path="dbpedia.validation", bucket=bucket, key_prefix=validation_channel)
    s3_train_data = "s3://{}/{}".format(bucket, train_channel)
    s3_validation_data = "s3://{}/{}".format(bucket, validation_channel)

    Salida:

    CPU times: user 546 ms, sys: 163 ms, total: 709 ms
    Wall time: 1.32 s
  6. Configure una ubicación de salida en S3 donde se cargue el artefacto del modelo para que los artefactos puedan ser la salida del trabajo de entrenamiento del algoritmo. Cree un sageMaker.estimator.Estimator objeto para iniciar el trabajo de formación.

    In [9]: s3_output_location = "s3://{}/{}/output".format(bucket, prefix)
    In [10]: region_name = boto3.Session().region_name
    In [11]: container = sagemaker.amazon.amazon_estimator.get_image_uri(region_name, "blazingtext","latest")
    print("Using SageMaker BlazingText container: {} ({})".format(container, region_name))

    Salida:

    The method get_image_uri has been renamed in sagemaker>=2.
    See: https://sagemaker.readthedocs.io/en/stable/v2.html for details.
    Defaulting to the only supported framework/algorithm version: 1. Ignoring f ramework/algorithm version: latest.
    Using SageMaker BlazingText container: 811284229777.dkr.ecr.us-east-1.amazo naws.com/blazingtext:1 (us-east-1)
  7. Defina el SageMaker Estrimator Con configuraciones de recursos e hiperparámetros para entrenar la clasificación de texto en el conjunto de datos DBPedia utilizando el modo supervisado en una instancia c4,4xlarge.

    In [12]: bt_model = sagemaker.estimator.Estimator(
    container,
    role,
    instance_count=1,
    instance_type="ml.c4.4xlarge",
    volume_size=30,
    max_run=360000,
    input_mode="File",
    output_path=s3_output_location,
    hyperparameters={
            "mode": "supervised",
            "epochs": 1,
            "min_count": 2,
            "learning_rate": 0.05,
            "vector_dim": 10,
            "early_stopping": True,
            "patience": 4,
            "min_epochs": 5,
            "word_ngrams": 2,
     },
         )
  8. Prepare un apretón de manos entre los canales de datos y el algoritmo. Para ello, cree el sagemaker.session.s3_input objetos de los canales de datos y mantenerlos en un diccionario para que el algoritmo los consuma.

    ln [13]: train_data = sagemaker.inputs.TrainingInput(
        s3_train_data,
        distribution="FullyReplicated",
        content_type="text/plain",
        s3_data_type="S3Prefix",
    )
    validation_data = sagemaker.inputs.TrainingInput(
        s3_validation_data,
        distribution="FullyReplicated",
        content_type="text/plain",
        s3_data_type="S3Prefix",
    )
    data_channels = {"train": train_data, "validation": validation_data}
  9. Una vez finalizado el trabajo, aparece el mensaje Trabajo finalizado. El modelo entrenado se puede encontrar en el cucharón de S3 que se configuró como el output_path en el estimador.

    ln [14]: bt_model.fit(inputs=data_channels, logs=True)

    Salida:

    INFO:sagemaker:Creating training-job with name: blazingtext-2023-02-16-20-3
    7-30-748
    2023-02-16 20:37:30 Starting - Starting the training job......
    2023-02-16 20:38:09 Starting - Preparing the instances for training......
    2023-02-16 20:39:24 Downloading - Downloading input data
    2023-02-16 20:39:24 Training - Training image download completed. Training in progress... Arguments: train
    [02/16/2023 20:39:41 WARNING 140279908747072] Loggers have already been set up. [02/16/2023 20:39:41 WARNING 140279908747072] Loggers have already been set up.
    [02/16/2023 20:39:41 INFO 140279908747072] nvidia-smi took: 0.0251793861389
    16016 secs to identify 0 gpus
    [02/16/2023 20:39:41 INFO 140279908747072] Running single machine CPU Blazi ngText training using supervised mode.
    Number of CPU sockets found in instance is  1
    [02/16/2023 20:39:41 INFO 140279908747072] Processing /opt/ml/input/data/tr ain/dbpedia.train . File size: 35.0693244934082 MB
    [02/16/2023 20:39:41 INFO 140279908747072] Processing /opt/ml/input/data/va lidation/dbpedia.validation . File size: 21.887572288513184 MB
    Read 6M words
    Number of words:  149301
    Loading validation data from /opt/ml/input/data/validation/dbpedia.validati on
    Loaded validation data.
    -------------- End of epoch: 1 ##### Alpha: 0.0000  Progress: 100.00%  Million Words/sec: 10.39 ##### Training finished.
    Average throughput in Million words/sec: 10.39
    Total training time in seconds: 0.60
    #train_accuracy: 0.7223
    Number of train examples: 112000
    #validation_accuracy: 0.7205
    Number of validation examples: 70000
    2023-02-16 20:39:55 Uploading - Uploading generated training model
    2023-02-16 20:40:11 Completed - Training job completed
    Training seconds: 68
    Billable seconds: 68
  10. Una vez completado el entrenamiento, implemente el modelo entrenado como un punto final alojado en tiempo real de Amazon SageMaker para hacer predicciones.

    In [15]: from sagemaker.serializers import JSONSerializer
     text_classifier = bt_model.deploy(
         initial_instance_count=1, instance_type="ml.m4.xlarge", serializer=JSONS
    )

    Salida:

    INFO:sagemaker:Creating model with name: blazingtext-2023-02-16-20-41-33-10
    0
    INFO:sagemaker:Creating endpoint-config with name blazingtext-2023-02-16-20
    -41-33-100
    INFO:sagemaker:Creating endpoint with name blazingtext-2023-02-16-20-41-33-
    100
    -------!
    In [16]: sentences = [
        "Convair was an american aircraft manufacturing company which later expanded into rockets and spacecraft.",
           "Berwick secondary college is situated in the outer melbourne metropolitan suburb of berwick .",
    ]
    # using the same nltk tokenizer that we used during data preparation for training
    tokenized_sentences = [" ".join(nltk.word_tokenize(sent)) for sent in sentences]
    payload = {"instances": tokenized_sentences} response = text_classifier.predict(payload)
    predictions = json.loads(response)
    print(json.dumps(predictions, indent=2))
    [
      {
        "label": [
          "__label__Artist"
        ],
        "prob": [
          0.4090951681137085
        ]
      },
      {
        "label": [
          "__label__EducationalInstitution"
        ],
        "prob": [
          0.49466073513031006
        ]
      }
    ]
  11. Por defecto, el modelo devuelve una predicción con la mayor probabilidad. Para recuperar la parte superior k predicciones, listo k en el archivo de configuración.

    In [17]: payload = {"instances": tokenized_sentences, "configuration": {"k": 2}}
     response = text_classifier.predict(payload)
    
     predictions = json.loads(response)
     print(json.dumps(predictions, indent=2))
    [
      {
        "label": [
          "__label__Artist",
          "__label__MeanOfTransportation"
        ],
        "prob": [
          0.4090951681137085,
          0.26930734515190125
        ]
      },
      {
        "label": [
          "__label__EducationalInstitution",
          "__label__Building"
        ],
        "prob": [
          0.49466073513031006,
          0.15817692875862122
        ]
      }
    ]
  12. Elimine el punto final antes de cerrar el bloc de notas.

    In [18]: sess.delete_endpoint(text_classifier.endpoint)
    WARNING:sagemaker.deprecations:The endpoint attribute has been renamed in s agemaker>=2.
    See: https://sagemaker.readthedocs.io/en/stable/v2.html for details.
    INFO:sagemaker:Deleting endpoint with name: blazingtext-2023-02-16-20-41-33
    -100