Die deutsche Sprachversion wurde als Serviceleistung für Sie durch maschinelle Übersetzung erstellt. Bei eventuellen Unstimmigkeiten hat die englische Sprachversion Vorrang.
Anhang C: verify_data_netapp.py
Beitragende
Änderungen vorschlagen
Dieser Abschnitt enthält ein Beispiel-Python-Skript, das zur Validierung der Vektordatenbank in der NetApp-Vektordatenbank-Lösung verwendet werden kann.
Anhang C: verify_data_netapp.py
root@node2:~# cat verify_data_netapp.py
import time
import os
import numpy as np
from pymilvus import (
connections,
utility,
FieldSchema, CollectionSchema, DataType,
Collection,
)
fmt = "\n=== {:30} ===\n"
search_latency_fmt = "search latency = {:.4f}s"
num_entities, dim = 3000, 16
rng = np.random.default_rng(seed=19530)
entities = [
# provide the pk field because `auto_id` is set to False
[i for i in range(num_entities)],
rng.random(num_entities).tolist(), # field random, only supports list
rng.random((num_entities, dim)), # field embeddings, supports numpy.ndarray and list
]
################################################################################
# 1. get recovered collection hello_milvus_ntapnew_update2_sc
print(fmt.format("start connecting to Milvus"))
host = os.environ.get('MILVUS_HOST')
if host == None:
host = "localhost"
print(fmt.format(f"Milvus host: {host}"))
#connections.connect("default", host=host, port="19530")
connections.connect("default", host=host, port="27017")
recover_collections = ["hello_milvus_ntapnew_update2_sc", "hello_milvus_ntapnew_update2_sc2"]
for recover_collection_name in recover_collections:
has = utility.has_collection(recover_collection_name)
print(f"Does collection {recover_collection_name} exist in Milvus: {has}")
recover_collection = Collection(recover_collection_name)
print(recover_collection.schema)
recover_collection.flush()
print(f"Number of entities in Milvus: {recover_collection_name} : {recover_collection.num_entities}") # check the num_entites
################################################################################
# 4. create index
# We are going to create an IVF_FLAT index for hello_milvus_ntapnew_update2_sc collection.
# create_index() can only be applied to `FloatVector` and `BinaryVector` fields.
print(fmt.format("Start Creating index IVF_FLAT"))
index = {
"index_type": "IVF_FLAT",
"metric_type": "L2",
"params": {"nlist": 128},
}
recover_collection.create_index("embeddings", index)
################################################################################
# 5. search, query, and hybrid search
# After data were inserted into Milvus and indexed, you can perform:
# - search based on vector similarity
# - query based on scalar filtering(boolean, int, etc.)
# - hybrid search based on vector similarity and scalar filtering.
#
# Before conducting a search or a query, you need to load the data in `hello_milvus` into memory.
print(fmt.format("Start loading"))
recover_collection.load()
# -----------------------------------------------------------------------------
# search based on vector similarity
print(fmt.format("Start searching based on vector similarity"))
vectors_to_search = entities[-1][-2:]
search_params = {
"metric_type": "L2",
"params": {"nprobe": 10},
}
start_time = time.time()
result = recover_collection.search(vectors_to_search, "embeddings", search_params, limit=3, output_fields=["random"])
end_time = time.time()
for hits in result:
for hit in hits:
print(f"hit: {hit}, random field: {hit.entity.get('random')}")
print(search_latency_fmt.format(end_time - start_time))
# -----------------------------------------------------------------------------
# query based on scalar filtering(boolean, int, etc.)
print(fmt.format("Start querying with `random > 0.5`"))
start_time = time.time()
result = recover_collection.query(expr="random > 0.5", output_fields=["random", "embeddings"])
end_time = time.time()
print(f"query result:\n-{result[0]}")
print(search_latency_fmt.format(end_time - start_time))
# -----------------------------------------------------------------------------
# hybrid search
print(fmt.format("Start hybrid searching with `random > 0.5`"))
start_time = time.time()
result = recover_collection.search(vectors_to_search, "embeddings", search_params, limit=3, expr="random > 0.5", output_fields=["random"])
end_time = time.time()
for hits in result:
for hit in hits:
print(f"hit: {hit}, random field: {hit.entity.get('random')}")
print(search_latency_fmt.format(end_time - start_time))
###############################################################################
# 7. drop collection
# Finally, drop the hello_milvus, hello_milvus_ntapnew_update2_sc collection
#print(fmt.format(f"Drop collection {recover_collection_name}"))
#utility.drop_collection(recover_collection_name)
root@node2:~#