Skip to main content
NetApp Solutions
La versione in lingua italiana fornita proviene da una traduzione automatica. Per eventuali incoerenze, fare riferimento alla versione in lingua inglese.

Appendice C: verify_data_netapp.py

Collaboratori

Questa sezione contiene uno script Python di esempio che può essere utilizzato per convalidare il database vettoriale nella soluzione di database vettoriale NetApp.

Appendice C: verify_data_netapp.py

root@node2:~# cat verify_data_netapp.py
import time
import os
import numpy as np
from pymilvus import (
    connections,
    utility,
    FieldSchema, CollectionSchema, DataType,
    Collection,
)

fmt = "\n=== {:30} ===\n"
search_latency_fmt = "search latency = {:.4f}s"
num_entities, dim = 3000, 16
rng = np.random.default_rng(seed=19530)
entities = [
    # provide the pk field because `auto_id` is set to False
    [i for i in range(num_entities)],
    rng.random(num_entities).tolist(),  # field random, only supports list
    rng.random((num_entities, dim)),    # field embeddings, supports numpy.ndarray and list
]

################################################################################
# 1. get recovered collection hello_milvus_ntapnew_update2_sc
print(fmt.format("start connecting to Milvus"))
host = os.environ.get('MILVUS_HOST')
if host == None:
    host = "localhost"
print(fmt.format(f"Milvus host: {host}"))
#connections.connect("default", host=host, port="19530")
connections.connect("default", host=host, port="27017")

recover_collections = ["hello_milvus_ntapnew_update2_sc", "hello_milvus_ntapnew_update2_sc2"]

for recover_collection_name in recover_collections:
    has = utility.has_collection(recover_collection_name)
    print(f"Does collection {recover_collection_name} exist in Milvus: {has}")
    recover_collection = Collection(recover_collection_name)
    print(recover_collection.schema)
    recover_collection.flush()

    print(f"Number of entities in Milvus: {recover_collection_name} : {recover_collection.num_entities}")  # check the num_entites

    ################################################################################
    # 4. create index
    # We are going to create an IVF_FLAT index for hello_milvus_ntapnew_update2_sc collection.
    # create_index() can only be applied to `FloatVector` and `BinaryVector` fields.
    print(fmt.format("Start Creating index IVF_FLAT"))
    index = {
        "index_type": "IVF_FLAT",
        "metric_type": "L2",
        "params": {"nlist": 128},
    }

    recover_collection.create_index("embeddings", index)

    ################################################################################
    # 5. search, query, and hybrid search
    # After data were inserted into Milvus and indexed, you can perform:
    # - search based on vector similarity
    # - query based on scalar filtering(boolean, int, etc.)
    # - hybrid search based on vector similarity and scalar filtering.
    #

    # Before conducting a search or a query, you need to load the data in `hello_milvus` into memory.
    print(fmt.format("Start loading"))
    recover_collection.load()

    # -----------------------------------------------------------------------------
    # search based on vector similarity
    print(fmt.format("Start searching based on vector similarity"))
    vectors_to_search = entities[-1][-2:]
    search_params = {
        "metric_type": "L2",
        "params": {"nprobe": 10},
    }

    start_time = time.time()
    result = recover_collection.search(vectors_to_search, "embeddings", search_params, limit=3, output_fields=["random"])
    end_time = time.time()

    for hits in result:
        for hit in hits:
            print(f"hit: {hit}, random field: {hit.entity.get('random')}")
    print(search_latency_fmt.format(end_time - start_time))

    # -----------------------------------------------------------------------------
    # query based on scalar filtering(boolean, int, etc.)
    print(fmt.format("Start querying with `random > 0.5`"))

    start_time = time.time()
    result = recover_collection.query(expr="random > 0.5", output_fields=["random", "embeddings"])
    end_time = time.time()

    print(f"query result:\n-{result[0]}")
    print(search_latency_fmt.format(end_time - start_time))

    # -----------------------------------------------------------------------------
    # hybrid search
    print(fmt.format("Start hybrid searching with `random > 0.5`"))

    start_time = time.time()
    result = recover_collection.search(vectors_to_search, "embeddings", search_params, limit=3, expr="random > 0.5", output_fields=["random"])
    end_time = time.time()

    for hits in result:
        for hit in hits:
            print(f"hit: {hit}, random field: {hit.entity.get('random')}")
    print(search_latency_fmt.format(end_time - start_time))

    ###############################################################################
    # 7. drop collection
    # Finally, drop the hello_milvus, hello_milvus_ntapnew_update2_sc collection

    #print(fmt.format(f"Drop collection {recover_collection_name}"))
    #utility.drop_collection(recover_collection_name)

root@node2:~#
Python