Skip to main content
NetApp Solutions
本繁體中文版使用機器翻譯,譯文僅供參考,若與英文版本牴觸,應以英文版本為準。

資料科學家和其他應用程式的資料雙重性

貢獻者

資料可在 NFS 中取得、並可從 AWS SageMaker 從 S3 存取。

技術需求

您需要 NetApp BlueXP 、 NetApp Cloud Volumes ONTAP 和 AWS SageMaker 筆記型電腦來處理資料雙重用途使用案例。

軟體需求

下表列出實作使用案例所需的軟體元件。

軟體 數量

藍圖

1.

NetApp Cloud Volumes ONTAP

1.

AWS SageMaker 筆記型電腦

1.

部署程序

部署資料雙重性解決方案涉及下列工作:

  • BlueXP Connector

  • NetApp Cloud Volumes ONTAP

  • 用於機器學習的資料

  • AWS SageMaker

  • 通過 Jupyter 筆記型電腦驗證的機器學習

BlueXP 連接器

在此驗證中、我們使用 AWS 。也適用於 Azure 和 Google Cloud 。若要在 AWS 中建立 BlueXP Connector 、請完成下列步驟:

  1. 我們使用的認證是以 BlueXP 中的 mcarl-Marketer-訂閱 為基礎。

  2. 選擇適合您環境的區域(例如、 us-east-1 [N.)、然後選擇驗證方法(例如、承擔角色或 AWS 金鑰)。在此驗證中、我們使用 AWS 金鑰。

  3. 提供連接器的名稱並建立角色。

  4. 根據您是否需要公有 IP 、提供 VPC 、子網路或金鑰組等網路詳細資料。

  5. 提供安全性群組的詳細資料、例如從來源類型存取 HTTP 、 HTTPS 或 SSH 、例如 Anywhere 和 IP 範圍資訊。

  6. 檢閱並建立 BlueXP Connector 。

  7. 確認 BlueXP EC2 執行個體狀態在 AWS 主控台中執行、然後從 * 網路 * 索引標籤檢查 IP 位址。

  8. 從 BlueXP 入口網站登入 Connector 使用者介面、或使用 IP 位址從瀏覽器存取。

NetApp Cloud Volumes ONTAP

若要在 BlueXP 中建立 Cloud Volumes ONTAP 執行個體、請完成下列步驟:

  1. 建立新的工作環境、選取雲端供應商、然後選取 Cloud Volumes ONTAP 執行個體類型(例如單一 CVO 、 HA 或 Amazon FSX ONTAP for ONTAP )。

  2. 提供 Cloud Volumes ONTAP 叢集名稱和認證等詳細資料。在此驗證中、我們建立了一個名為的 Cloud Volumes ONTAP 執行個體 svm_sagemaker_cvo_sn1

  3. 選取 Cloud Volumes ONTAP 所需的服務。在此驗證中、我們選擇僅監控、因此我們停用了 * 資料感知與法規遵循 * 和 * 備份至雲端服務 * 。

  4. 在 * 位置與連線 * 區段中、選取 AWS 區域、 VPC 、子網路、安全性群組、 SSH 驗證方法、 以及密碼或金鑰配對。

  5. 選擇充電方式。我們使用 * Professional* 進行此驗證。

  6. 您可以選擇預先設定的套件、例如 * POC 和小型工作負載 * 、 * 資料庫和應用程式資料生產工作負載 * 、 * 具成本效益的 DR* 或 * 最高效能的正式作業工作負載 * 。在此驗證中、我們選擇 * POC 和小型工作負載 * 。

  7. 建立具有特定大小、允許的通訊協定和匯出選項的 Volume 。在此驗證中、我們建立了一個名為的 Volume vol1

  8. 選擇設定檔磁碟類型和分層原則。在此驗證中、我們停用了 * 儲存效率 * 和 * 通用 SSD :動態效能 * 。

  9. 最後、檢閱並建立 Cloud Volumes ONTAP 執行個體。然後等待 15 到 20 分鐘、讓 BlueXP 建立 Cloud Volumes ONTAP 工作環境。

  10. 設定下列參數以啟用二元傳輸協定。ONTAP 9 支援二元傳輸協定( NFS/S3 )。12.1 及更新版本。

    1. 在此驗證中、我們建立了一個稱為的 SVM svm_sagemaker_cvo_sn1 和Volume vol1

    2. 驗證 SVM 是否支援 NFS 和 S3 的傳輸協定。如果沒有、請修改 SVM 以支援它們。

      sagemaker_cvo_sn1::> vserver show -vserver svm_sagemaker_cvo_sn1
                                          Vserver: svm_sagemaker_cvo_sn1
                                     Vserver Type: data
                                  Vserver Subtype: default
                                     Vserver UUID: 911065dd-a8bc-11ed-bc24-e1c0f00ad86b
                                      Root Volume: svm_sagemaker_cvo_sn1_root
                                        Aggregate: aggr1
                                       NIS Domain: -
                       Root Volume Security Style: unix
                                      LDAP Client: -
                     Default Volume Language Code: C.UTF-8
                                  Snapshot Policy: default
                                    Data Services: data-cifs, data-flexcache,
                                                   data-iscsi, data-nfs,
                                                   data-nvme-tcp
                                          Comment:
                                     Quota Policy: default
                      List of Aggregates Assigned: aggr1
       Limit on Maximum Number of Volumes allowed: unlimited
                              Vserver Admin State: running
                        Vserver Operational State: running
         Vserver Operational State Stopped Reason: -
                                Allowed Protocols: nfs, cifs, fcp, iscsi, ndmp, s3
                             Disallowed Protocols: nvme
                  Is Vserver with Infinite Volume: false
                                 QoS Policy Group: -
                              Caching Policy Name: -
                                      Config Lock: false
                                     IPspace Name: Default
                               Foreground Process: -
                          Logical Space Reporting: true
                        Logical Space Enforcement: false
      Default Anti_ransomware State of the Vserver's Volumes: disabled
                  Enable Analytics on New Volumes: false
          Enable Activity Tracking on New Volumes: false
      
      sagemaker_cvo_sn1::>
  11. 必要時建立並安裝 CA 憑證。

  12. 建立服務資料原則。

    sagemaker_cvo_sn1::*> network interface service-policy create -vserver svm_sagemaker_cvo_sn1 -policy sagemaker_s3_nfs_policy -services data-core,data-s3-server,data-nfs,data-flexcache
    sagemaker_cvo_sn1::*> network interface create -vserver svm_sagemaker_cvo_sn1 -lif svm_sagemaker_cvo_sn1_s3_lif -service-policy sagemaker_s3_nfs_policy -home-node sagemaker_cvo_sn1-01 -address 172.30.10.41 -netmask 255.255.255.192
    
    Warning: The configured failover-group has no valid failover targets for the LIF's failover-policy. To view the failover targets for a LIF, use
             the "network interface show -failover" command.
    
    sagemaker_cvo_sn1::*>
    sagemaker_cvo_sn1::*> network interface show
    Logical    Status     Network            Current       Current Is
    Vserver     Interface  Admin/Oper Address/Mask       Node          Port    Home
    ----------- ---------- ---------- ------------------ ------------- ------- ----
    sagemaker_cvo_sn1
                cluster-mgmt up/up    172.30.10.40/26    sagemaker_cvo_sn1-01
                                                                       e0a     true
                intercluster up/up    172.30.10.48/26    sagemaker_cvo_sn1-01
                                                                       e0a     true
                sagemaker_cvo_sn1-01_mgmt1
                             up/up    172.30.10.58/26    sagemaker_cvo_sn1-01
                                                                       e0a     true
    svm_sagemaker_cvo_sn1
                svm_sagemaker_cvo_sn1_data_lif
                             up/up    172.30.10.23/26    sagemaker_cvo_sn1-01
                                                                       e0a     true
                svm_sagemaker_cvo_sn1_mgmt_lif
                             up/up    172.30.10.32/26    sagemaker_cvo_sn1-01
                                                                       e0a     true
                svm_sagemaker_cvo_sn1_s3_lif
                             up/up    172.30.10.41/26    sagemaker_cvo_sn1-01
                                                                       e0a     true
    6 entries were displayed.
    
    sagemaker_cvo_sn1::*>
    sagemaker_cvo_sn1::*> vserver object-store-server create -vserver svm_sagemaker_cvo_sn1  -is-http-enabled true -object-store-server svm_sagemaker_cvo_s3_sn1 -is-https-enabled false
    sagemaker_cvo_sn1::*> vserver object-store-server show
    
    Vserver: svm_sagemaker_cvo_sn1
    
               Object Store Server Name: svm_sagemaker_cvo_s3_sn1
                   Administrative State: up
                           HTTP Enabled: true
                 Listener Port For HTTP: 80
                          HTTPS Enabled: false
         Secure Listener Port For HTTPS: 443
      Certificate for HTTPS Connections: -
                      Default UNIX User: pcuser
                   Default Windows User: -
                                Comment:
    
    sagemaker_cvo_sn1::*>
  13. 檢查 Aggregate 詳細資料。

    sagemaker_cvo_sn1::*> aggr show
    
    
    Aggregate     Size Available Used% State   #Vols  Nodes            RAID Status
    --------- -------- --------- ----- ------- ------ ---------------- ------------
    aggr0_sagemaker_cvo_sn1_01
               124.0GB   50.88GB   59% online       1 sagemaker_cvo_   raid0,
                                                      sn1-01           normal
    aggr1      907.1GB   904.9GB    0% online       2 sagemaker_cvo_   raid0,
                                                      sn1-01           normal
    2 entries were displayed.
    
    sagemaker_cvo_sn1::*>
  14. 建立使用者和群組。

    sagemaker_cvo_sn1::*> vserver object-store-server user create -vserver svm_sagemaker_cvo_sn1 -user s3user
    
    sagemaker_cvo_sn1::*> vserver object-store-server user show
    Vserver     User            ID        Access Key          Secret Key
    ----------- --------------- --------- ------------------- -------------------
    svm_sagemaker_cvo_sn1
                root            0         -                   -
       Comment: Root User
    svm_sagemaker_cvo_sn1
                s3user          1         0ZNAX21JW5Q8AP80CQ2E
                                                              PpLs4gA9K0_2gPhuykkp014gBjcC9Rbi3QDX_6rr
    2 entries were displayed.
    
    sagemaker_cvo_sn1::*>
    
    
    sagemaker_cvo_sn1::*> vserver object-store-server group create -name s3group -users s3user -comment ""
    
    sagemaker_cvo_sn1::*>
    sagemaker_cvo_sn1::*> vserver object-store-server group delete -gid 1 -vserver svm_sagemaker_cvo_sn1
    
    sagemaker_cvo_sn1::*> vserver object-store-server group create -name s3group -users s3user -comment "" -policies FullAccess
    
    sagemaker_cvo_sn1::*>
  15. 在 NFS 磁碟區上建立貯體。

    sagemaker_cvo_sn1::*> vserver object-store-server bucket create -bucket ontapbucket1 -type nas -comment "" -vserver svm_sagemaker_cvo_sn1 -nas-path /vol1
    sagemaker_cvo_sn1::*> vserver object-store-server bucket show
    Vserver     Bucket          Type     Volume            Size       Encryption Role       NAS Path
    ----------- --------------- -------- ----------------- ---------- ---------- ---------- ----------
    svm_sagemaker_cvo_sn1
                ontapbucket1    nas      vol1              -          false      -          /vol1
    sagemaker_cvo_sn1::*>

AWS SageMaker

若要從 AWS SageMaker 建立 AWS 筆記型電腦、請完成下列步驟:

  1. 請確定正在建立 Notebook 執行個體的使用者擁有 amzonSageMakerFullAccess IAM 原則、或是現有群組的一部分、該群組擁有 amzonSageMakerFullAccess 權限。在此驗證中、使用者是現有群組的一部分。

  2. 提供下列資訊:

    • 筆記本執行個體名稱。

    • 執行個體類型。

    • 平台識別碼。

    • 選取具有 amaronSageMakerFullAccess 權限的 IAM 角色。

    • root 存取權–啟用。

    • 加密金鑰 - 選取「無自訂加密」。

    • 保留其餘的預設選項。

  3. 在此驗證中、 SageMaker 執行個體詳細資料如下:

    描述步驟的螢幕擷取畫面。

    描述步驟的螢幕擷取畫面。

  4. 啟動 AWS 筆記型電腦。

    描述步驟的螢幕擷取畫面。

  5. 開啟 Jupyter 實驗室。

    描述步驟的螢幕擷取畫面。

  6. 登入終端機並掛載 Cloud Volumes ONTAP Volume 。

    sh-4.2$ sudo mkdir /vol1; sudo mount -t nfs 172.30.10.41:/vol1 /vol1
    sh-4.2$ df -h
    Filesystem          Size  Used Avail Use% Mounted on
    devtmpfs            2.0G     0  2.0G   0% /dev
    tmpfs               2.0G     0  2.0G   0% /dev/shm
    tmpfs               2.0G  624K  2.0G   1% /run
    tmpfs               2.0G     0  2.0G   0% /sys/fs/cgroup
    /dev/xvda1          140G  114G   27G  82% /
    /dev/xvdf           4.8G   72K  4.6G   1% /home/ec2-user/SageMaker
    tmpfs               393M     0  393M   0% /run/user/1001
    tmpfs               393M     0  393M   0% /run/user/1002
    tmpfs               393M     0  393M   0% /run/user/1000
    172.30.10.41:/vol1  973M  189M  785M  20% /vol1
    sh-4.2$
  7. 使用 AWS CLI 命令檢查在 Cloud Volumes ONTAP 磁碟區上建立的貯體。

    sh-4.2$ aws configure --profile netapp
    AWS Access Key ID [None]: 0ZNAX21JW5Q8AP80CQ2E
    AWS Secret Access Key [None]: PpLs4gA9K0_2gPhuykkp014gBjcC9Rbi3QDX_6rr
    Default region name [None]: us-east-1
    Default output format [None]:
    sh-4.2$
    
    sh-4.2$ aws s3 ls --profile netapp --endpoint-url
    2023-02-10 17:59:48 ontapbucket1
    
    sh-4.2$ aws s3 ls --profile netapp --endpoint-url  s3://ontapbucket1/
    
    
    2023-02-10 18:46:44       4747 1
    2023-02-10 18:48:32         96 setup.cfg
    
    sh-4.2$

用於機器學習的資料

在這項驗證中、我們使用來自 DBexpedia 的資料集、這是一項來自群眾的社群努力、從各種 Wikimedia 專案所建立的資訊中擷取結構化內容。

  1. 從 DBexpedia GitHub 位置下載資料並將其解壓縮。請使用上一節所使用的相同終端機。

    sh-4.2$ wget
    --2023-02-14 23:12:11--
    Resolving github.com (github.com)... 140.82.113.3
    Connecting to github.com (github.com)|140.82.113.3|:443... connected.
    HTTP request sent, awaiting response... 302 Found
    Location:  [following]
    --2023-02-14 23:12:11--
    Resolving raw.githubusercontent.com (raw.githubusercontent.com)... 185.199.109.133, 185.199.110.133, 185.199.111.133, ...
    Connecting to raw.githubusercontent.com (raw.githubusercontent.com)|185.199.109.133|:443... connected.
    HTTP request sent, awaiting response... 200 OK
    Length: 68431223 (65M) [application/octet-stream]
    Saving to: ‘dbpedia_csv.tar.gz’
    
    100%[==============================================================================================================================================================>] 68,431,223  56.2MB/s   in 1.2s
    
    2023-02-14 23:12:13 (56.2 MB/s) - ‘dbpedia_csv.tar.gz’ saved [68431223/68431223]
    
    sh-4.2$ tar -zxvf dbpedia_csv.tar.gz
    dbpedia_csv/
    dbpedia_csv/test.csv
    dbpedia_csv/classes.txt
    dbpedia_csv/train.csv
    dbpedia_csv/readme.txt
    sh-4.2$
  2. 將資料複製到 Cloud Volumes ONTAP 位置、然後使用 AWS CLI 從 S3 儲存區檢查資料。

    sh-4.2$ df -h
    Filesystem          Size  Used Avail Use% Mounted on
    devtmpfs            2.0G     0  2.0G   0% /dev
    tmpfs               2.0G     0  2.0G   0% /dev/shm
    tmpfs               2.0G  628K  2.0G   1% /run
    tmpfs               2.0G     0  2.0G   0% /sys/fs/cgroup
    /dev/xvda1          140G  114G   27G  82% /
    /dev/xvdf           4.8G   52K  4.6G   1% /home/ec2-user/SageMaker
    tmpfs               393M     0  393M   0% /run/user/1002
    tmpfs               393M     0  393M   0% /run/user/1001
    tmpfs               393M     0  393M   0% /run/user/1000
    172.30.10.41:/vol1  973M  384K  973M   1% /vol1
    sh-4.2$ pwd
    /home/ec2-user
    sh-4.2$ cp -ra dbpedia_csv /vol1
    sh-4.2$ aws s3 ls --profile netapp --endpoint-url  s3://ontapbucket1/
                               PRE dbpedia_csv/
    2023-02-10 18:46:44       4747 1
    2023-02-10 18:48:32         96 setup.cfg
    sh-4.2$
  3. 執行基本驗證、確保 S3 儲存區的讀取 / 寫入功能正常運作。

    sh-4.2$ aws s3 cp  --profile netapp --endpoint-url  /usr/share/doc/util-linux-2.30.2 s3://ontapbucket1/ --recursive
    upload: ../../../usr/share/doc/util-linux-2.30.2/deprecated.txt to s3://ontapbucket1/deprecated.txt
    upload: ../../../usr/share/doc/util-linux-2.30.2/getopt-parse.bash to s3://ontapbucket1/getopt-parse.bash
    upload: ../../../usr/share/doc/util-linux-2.30.2/README to s3://ontapbucket1/README
    upload: ../../../usr/share/doc/util-linux-2.30.2/getopt-parse.tcsh to s3://ontapbucket1/getopt-parse.tcsh
    upload: ../../../usr/share/doc/util-linux-2.30.2/AUTHORS to s3://ontapbucket1/AUTHORS
    upload: ../../../usr/share/doc/util-linux-2.30.2/NEWS to s3://ontapbucket1/NEWS
    sh-4.2$ aws s3 ls --profile netapp --endpoint-url  s3://ontapbucket1/s3://ontapbucket1/
    
    An error occurred (InternalError) when calling the ListObjectsV2 operation: We encountered an internal error. Please try again.
    sh-4.2$ aws s3 ls --profile netapp --endpoint-url  s3://ontapbucket1/
                               PRE dbpedia_csv/
    2023-02-16 19:19:27      26774 AUTHORS
    2023-02-16 19:19:27      72727 NEWS
    2023-02-16 19:19:27       4493 README
    2023-02-16 19:19:27       2825 deprecated.txt
    2023-02-16 19:19:27       1590 getopt-parse.bash
    2023-02-16 19:19:27       2245 getopt-parse.tcsh
    sh-4.2$ ls -ltr /vol1
    total 132
    drwxrwxr-x 2 ec2-user ec2-user  4096 Mar 29  2015 dbpedia_csv
    -rw-r--r-- 1 nobody   nobody    2245 Apr 10 17:37 getopt-parse.tcsh
    -rw-r--r-- 1 nobody   nobody    2825 Apr 10 17:37 deprecated.txt
    -rw-r--r-- 1 nobody   nobody    4493 Apr 10 17:37 README
    -rw-r--r-- 1 nobody   nobody    1590 Apr 10 17:37 getopt-parse.bash
    -rw-r--r-- 1 nobody   nobody   26774 Apr 10 17:37 AUTHORS
    -rw-r--r-- 1 nobody   nobody   72727 Apr 10 17:37 NEWS
    sh-4.2$ ls -ltr /vol1/dbpedia_csv/
    total 192104
    -rw------- 1 ec2-user ec2-user 174148970 Mar 28  2015 train.csv
    -rw------- 1 ec2-user ec2-user  21775285 Mar 28  2015 test.csv
    -rw------- 1 ec2-user ec2-user       146 Mar 28  2015 classes.txt
    -rw-rw-r-- 1 ec2-user ec2-user      1758 Mar 29  2015 readme.txt
    sh-4.2$ chmod -R 777 /vol1/dbpedia_csv
    sh-4.2$ ls -ltr /vol1/dbpedia_csv/
    total 192104
    -rwxrwxrwx 1 ec2-user ec2-user 174148970 Mar 28  2015 train.csv
    -rwxrwxrwx 1 ec2-user ec2-user  21775285 Mar 28  2015 test.csv
    -rwxrwxrwx 1 ec2-user ec2-user       146 Mar 28  2015 classes.txt
    -rwxrwxrwx 1 ec2-user ec2-user      1758 Mar 29  2015 readme.txt
    sh-4.2$ aws s3 cp --profile netapp --endpoint-url http://172.30.2.248/ s3://ontapbucket1/ /tmp --recursive
    download: s3://ontapbucket1/AUTHORS to ../../tmp/AUTHORS
    download: s3://ontapbucket1/README to ../../tmp/README
    download: s3://ontapbucket1/NEWS to ../../tmp/NEWS
    download: s3://ontapbucket1/dbpedia_csv/classes.txt to ../../tmp/dbpedia_csv/classes.txt
    download: s3://ontapbucket1/dbpedia_csv/readme.txt to ../../tmp/dbpedia_csv/readme.txt
    download: s3://ontapbucket1/deprecated.txt to ../../tmp/deprecated.txt
    download: s3://ontapbucket1/getopt-parse.bash to ../../tmp/getopt-parse.bash
    download: s3://ontapbucket1/getopt-parse.tcsh to ../../tmp/getopt-parse.tcsh
    download: s3://ontapbucket1/dbpedia_csv/test.csv to ../../tmp/dbpedia_csv/test.csv
    download: s3://ontapbucket1/dbpedia_csv/train.csv to ../../tmp/dbpedia_csv/train.csv
    sh-4.2$
    sh-4.2$ aws s3 ls --profile netapp --endpoint-url  s3://ontapbucket1/
                               PRE dbpedia_csv/
    2023-02-16 19:19:27      26774 AUTHORS
    2023-02-16 19:19:27      72727 NEWS
    2023-02-16 19:19:27       4493 README
    2023-02-16 19:19:27       2825 deprecated.txt
    2023-02-16 19:19:27       1590 getopt-parse.bash
    2023-02-16 19:19:27       2245 getopt-parse.tcsh
    sh-4.2$

驗證 Jupyter 筆記型電腦的機器學習

下列驗證功能可透過以下 SageMaker BlazingText 範例、透過文字分類提供機器學習建置、訓練及部署模型:

  1. 安裝 boto3 和 SageMaker 套件。

    In [1]:  pip install --upgrade boto3 sagemaker

    輸出:

    Looking in indexes: https://pypi.org/simple, https://pip.repos.neuron.amazo naws.com
    Requirement already satisfied: boto3 in /home/ec2-user/anaconda3/envs/pytho n3/lib/python3.10/site-packages (1.26.44)
    Collecting boto3
      Downloading boto3-1.26.72-py3-none-any.whl (132 kB)
         ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 132.7/132.7 kB 14.6 MB/s eta 0: 00:00
    Requirement already satisfied: sagemaker in /home/ec2-user/anaconda3/envs/p ython3/lib/python3.10/site-packages (2.127.0)
    Collecting sagemaker
      Downloading sagemaker-2.132.0.tar.gz (668 kB)
         ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 668.0/668.0 kB 12.3 MB/s eta 0:
    00:0000:01
      Preparing metadata (setup.py) ... done
    Collecting botocore<1.30.0,>=1.29.72
      Downloading botocore-1.29.72-py3-none-any.whl (10.4 MB)
         ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 10.4/10.4 MB 44.3 MB/s eta 0: 00:0000:010:01
    Requirement already satisfied: s3transfer<0.7.0,>=0.6.0 in /home/ec2-user/a naconda3/envs/python3/lib/python3.10/site-packages (from boto3) (0.6.0)
    Requirement already satisfied: jmespath<2.0.0,>=0.7.1 in /home/ec2-user/ana conda3/envs/python3/lib/python3.10/site-packages (from boto3) (0.10.0)
    Requirement already satisfied: attrs<23,>=20.3.0 in /home/ec2-user/anaconda
    3/envs/python3/lib/python3.10/site-packages (from sagemaker) (22.1.0)
    Requirement already satisfied: google-pasta in /home/ec2-user/anaconda3/env s/python3/lib/python3.10/site-packages (from sagemaker) (0.2.0)
    Requirement already satisfied: numpy<2.0,>=1.9.0 in /home/ec2-user/anaconda
    3/envs/python3/lib/python3.10/site-packages (from sagemaker) (1.22.4)
    Requirement already satisfied: protobuf<4.0,>=3.1 in /home/ec2-user/anacond a3/envs/python3/lib/python3.10/site-packages (from sagemaker) (3.20.3)
    Requirement already satisfied: protobuf3-to-dict<1.0,>=0.1.5 in /home/ec2-u ser/anaconda3/envs/python3/lib/python3.10/site-packages (from sagemaker)
    (0.1.5)
    Requirement already satisfied: smdebug_rulesconfig==1.0.1 in /home/ec2-use r/anaconda3/envs/python3/lib/python3.10/site-packages (from sagemaker) (1.
    0.1) Requirement already satisfied: importlib-metadata<5.0,>=1.4.0 in /home/ec2user/anaconda3/envs/python3/lib/python3.10/site-packages (from sagemaker)
    (4.13.0)
    Requirement already satisfied: packaging>=20.0 in /home/ec2-user/anaconda3/ envs/python3/lib/python3.10/site-packages (from sagemaker) (21.3)
    Requirement already satisfied: pandas in /home/ec2-user/anaconda3/envs/pyth on3/lib/python3.10/site-packages (from sagemaker) (1.5.1)
    Requirement already satisfied: pathos in /home/ec2-user/anaconda3/envs/pyth on3/lib/python3.10/site-packages (from sagemaker) (0.3.0)
    Requirement already satisfied: schema in /home/ec2-user/anaconda3/envs/pyth on3/lib/python3.10/site-packages (from sagemaker) (0.7.5) Requirement already satisfied: python-dateutil<3.0.0,>=2.1 in /home/ec2-use r/anaconda3/envs/python3/lib/python3.10/site-packages (from botocore<1.30.
    0,>=1.29.72->boto3) (2.8.2)
    Requirement already satisfied: urllib3<1.27,>=1.25.4 in /home/ec2-user/anac onda3/envs/python3/lib/python3.10/site-packages (from botocore<1.30.0,>=1.2
    9.72->boto3) (1.26.8) Requirement already satisfied: zipp>=0.5 in /home/ec2-user/anaconda3/envs/p ython3/lib/python3.10/site-packages (from importlib-metadata<5.0,>=1.4.0->s agemaker) (3.10.0)
    Requirement already satisfied: pyparsing!=3.0.5,>=2.0.2 in /home/ec2-user/a naconda3/envs/python3/lib/python3.10/site-packages (from packaging>=20.0->s agemaker) (3.0.9)
    Requirement already satisfied: six in /home/ec2-user/anaconda3/envs/python
    3/lib/python3.10/site-packages (from protobuf3-to-dict<1.0,>=0.1.5->sagemak er) (1.16.0)
    Requirement already satisfied: pytz>=2020.1 in /home/ec2-user/anaconda3/env s/python3/lib/python3.10/site-packages (from pandas->sagemaker) (2022.5)
    Requirement already satisfied: ppft>=1.7.6.6 in /home/ec2-user/anaconda3/en vs/python3/lib/python3.10/site-packages (from pathos->sagemaker) (1.7.6.6) Requirement already satisfied: multiprocess>=0.70.14 in /home/ec2-user/anac onda3/envs/python3/lib/python3.10/site-packages (from pathos->sagemaker)
    (0.70.14)
    Requirement already satisfied: dill>=0.3.6 in /home/ec2-user/anaconda3/env s/python3/lib/python3.10/site-packages (from pathos->sagemaker) (0.3.6)
    Requirement already satisfied: pox>=0.3.2 in /home/ec2-user/anaconda3/envs/ python3/lib/python3.10/site-packages (from pathos->sagemaker) (0.3.2) Requirement already satisfied: contextlib2>=0.5.5 in /home/ec2-user/anacond a3/envs/python3/lib/python3.10/site-packages (from schema->sagemaker) (21.
    6.0) Building wheels for collected packages: sagemaker
      Building wheel for sagemaker (setup.py) ... done
      Created wheel for sagemaker: filename=sagemaker-2.132.0-py2.py3-none-any. whl size=905449 sha256=f6100a5dc95627f2e2a49824e38f0481459a27805ee19b5a06ec
    83db0252fd41
      Stored in directory: /home/ec2-user/.cache/pip/wheels/60/41/b6/482e7ab096
    520df034fbf2dddd244a1d7ba0681b27ef45aa61
    Successfully built sagemaker
    Installing collected packages: botocore, boto3, sagemaker
      Attempting uninstall: botocore     Found existing installation: botocore 1.24.19
        Uninstalling botocore-1.24.19:       Successfully uninstalled botocore-1.24.19
      Attempting uninstall: boto3     Found existing installation: boto3 1.26.44
        Uninstalling boto3-1.26.44:
          Successfully uninstalled boto3-1.26.44
      Attempting uninstall: sagemaker     Found existing installation: sagemaker 2.127.0
        Uninstalling sagemaker-2.127.0:
          Successfully uninstalled sagemaker-2.127.0
    ERROR: pip's dependency resolver does not currently take into account all t he packages that are installed. This behaviour is the source of the followi ng dependency conflicts.
    awscli 1.27.44 requires botocore==1.29.44, but you have botocore 1.29.72 wh ich is incompatible.
    aiobotocore 2.0.1 requires botocore<1.22.9,>=1.22.8, but you have botocore 1.29.72 which is incompatible. Successfully installed boto3-1.26.72 botocore-1.29.72 sagemaker-2.132.0 Note: you may need to restart the kernel to use updated packages.
  2. 在下列步驟中、資料 (dbpedia_csv)從 S3 儲存區下載 ontapbucket1 至用於機器學習的 Jupyter Notebook 執行個體。

    In [2]: import sagemaker
    In [3]: from sagemaker import get_execution_role
    In [4]:
    import json
    import boto3
    sess = sagemaker.Session()
    role = get_execution_role()
    print(role)
    bucket = "ontapbucket1"
    print(bucket)
    sess.s3_client = boto3.client('s3',region_name='',aws_access_key_id = '0ZNAX21JW5Q8AP80CQ2E',  aws_secret_access_key = 'PpLs4gA9K0_2gPhuykkp014gBjcC9Rbi3QDX_6rr',
                                  use_ssl = False, endpoint_url = 'http://172.30.10.41',
                                  config=boto3.session.Config(signature_version='s3v4', s3={'addressing_style':'path'}) )
    sess.s3_resource = boto3.resource('s3',region_name='',aws_access_key_id = '0ZNAX21JW5Q8AP80CQ2E', aws_secret_access_key = 'PpLs4gA9K0_2gPhuykkp014gBjcC9Rbi3QDX_6rr',
                                  use_ssl = False, endpoint_url = 'http://172.30.10.41',
                                  config=boto3.session.Config(signature_version='s3v4', s3={'addressing_style':'path'}) )
    prefix = "blazingtext/supervised"
    import os
    my_bucket = sess.s3_resource.Bucket(bucket)
    my_bucket = sess.s3_resource.Bucket(bucket)
    #os.mkdir('dbpedia_csv')
    for s3_object in my_bucket.objects.all():
        filename = s3_object.key
    #    print(filename)
    #    print(s3_object.key)
        my_bucket.download_file(s3_object.key, filename)
  3. 下列程式碼會建立從整數索引到類別標籤的對應、以便在推斷期間擷取實際類別名稱。

    index_to_label = {}
    with open("dbpedia_csv/classes.txt") as f:
        for i,label in enumerate(f.readlines()):
            index_to_label[str(i + 1)] = label.strip()

    輸出會列出中的檔案和資料夾 ontapbucket1 做為 AWS SageMaker 機器學習驗證資料的貯體。

    arn:aws:iam::210811600188:role/SageMakerFullRole ontapbucket1
    AUTHORS
    AUTHORS
    NEWS
    NEWS
    README README
    dbpedia_csv/classes.txt dbpedia_csv/classes.txt dbpedia_csv/readme.txt dbpedia_csv/readme.txt dbpedia_csv/test.csv dbpedia_csv/test.csv dbpedia_csv/train.csv dbpedia_csv/train.csv deprecated.txt deprecated.txt getopt-parse.bash getopt-parse.bash getopt-parse.tcsh getopt-parse.tcsh
    In [5]: ls
    AUTHORS       deprecated.txt     getopt-parse.tcsh  NEWS    Untitled.ipynb dbpedia_csv/  getopt-parse.bash  lost+found/        README
    In [6]: ls -l dbpedia_csv
    total 191344
    -rw-rw-r-- 1 ec2-user ec2-user       146 Feb 16 19:43 classes.txt
    -rw-rw-r-- 1 ec2-user ec2-user      1758 Feb 16 19:43 readme.txt
    -rw-rw-r-- 1 ec2-user ec2-user  21775285 Feb 16 19:43 test.csv
    -rw-rw-r-- 1 ec2-user ec2-user 174148970 Feb 16 19:43 train.csv
  4. 開始資料預先處理階段、將訓練資料預先處理成空間分隔、可由 BlazingText 演算法和 nltk 程式庫使用的權證化文字格式、以使 DBPedia 資料集的輸入句子變成權證。下載 nltk tokenizer 和其他程式庫。。 transform_instance 平行套用至每個資料執行個體使用 Python 多重處理模組。

    ln [7]: from random import shuffle
    import multiprocessing
    from multiprocessing import Pool
    import csv
    import nltk
    nltk.download("punkt")
    def transform_instance(row):
        cur_row = []
        label ="__label__" + index_to_label [row[0]] # Prefix the index-ed label with __label__
        cur_row.append (label)
        cur_row.extend(nltk.word_tokenize(row[1].lower ()))
        cur_row.extend(nltk.word_tokenize(row[2].lower ()))
        return cur_row
    def preprocess(input_file, output_file, keep=1):
        all_rows = []
        with open(input_file,"r") as csvinfile:
            csv_reader = csv.reader(csvinfile, delimiter=",")
            for row in csv_reader:
                all_rows.append(row)
        shuffle(all_rows)
        all_rows = all_rows[: int(keep * len(all_rows))]
        pool = Pool(processes=multiprocessing.cpu_count())
        transformed_rows = pool.map(transform_instance, all_rows)
        pool.close()
        pool. join()
        with open(output_file, "w") as csvoutfile:
            csv_writer = csv.writer (csvoutfile, delimiter=" ", lineterminator="\n")
            csv_writer.writerows (transformed_rows)
    
    # Preparing the training dataset
    # since preprocessing the whole dataset might take a couple of minutes,
    # we keep 20% of the training dataset for this demo.
    # Set keep to 1 if you want to use the complete dataset
    preprocess("dbpedia_csv/train.csv","dbpedia.train", keep=0.2)
    # Preparing the validation dataset
    preprocess("dbpedia_csv/test.csv","dbpedia.validation")
    sess = sagemaker.Session()
    role = get_execution_role()
    print (role) # This is the role that sageMaker would use to leverage Aws resources (S3,  Cloudwatch) on your behalf
    bucket = sess.default_bucket() # Replace with your own bucket name if needed
    print("default Bucket::: ")
    print(bucket)

    輸出:

    [nltk_data] Downloading package punkt to /home/ec2-user/nltk_data...
    [nltk_data]   Package punkt is already up-to-date!
    arn:aws:iam::210811600188:role/SageMakerFullRole default Bucket::: sagemaker-us-east-1-210811600188
  5. 將格式化和訓練資料集上傳至 S3 、讓 SageMaker 可以使用該資料集來執行訓練工作。然後使用 Python SDK 將兩個檔案上傳至貯體和前置碼位置。

    ln [8]: %%time
    train_channel = prefix + "/train"
    validation_channel = prefix + "/validation"
    sess.upload_data(path="dbpedia.train", bucket=bucket, key_prefix=train_channel)
    sess.upload_data(path="dbpedia.validation", bucket=bucket, key_prefix=validation_channel)
    s3_train_data = "s3://{}/{}".format(bucket, train_channel)
    s3_validation_data = "s3://{}/{}".format(bucket, validation_channel)

    輸出:

    CPU times: user 546 ms, sys: 163 ms, total: 709 ms
    Wall time: 1.32 s
  6. 在 S3 上設定輸出位置、將模型成品載入其中、使成品能成為演算法訓練工作的輸出。建立 sageMaker.estimator.Estimator 物件以啟動訓練工作。

    In [9]: s3_output_location = "s3://{}/{}/output".format(bucket, prefix)
    In [10]: region_name = boto3.Session().region_name
    In [11]: container = sagemaker.amazon.amazon_estimator.get_image_uri(region_name, "blazingtext","latest")
    print("Using SageMaker BlazingText container: {} ({})".format(container, region_name))

    輸出:

    The method get_image_uri has been renamed in sagemaker>=2.
    See: https://sagemaker.readthedocs.io/en/stable/v2.html for details.
    Defaulting to the only supported framework/algorithm version: 1. Ignoring f ramework/algorithm version: latest.
    Using SageMaker BlazingText container: 811284229777.dkr.ecr.us-east-1.amazo naws.com/blazingtext:1 (us-east-1)
  7. 定義 SageMaker Estrimator 使用資源組態和超參數、在 c4.4xlarge 執行個體上使用受監督模式、在 DBPedia 資料集上訓練文字分類。

    In [12]: bt_model = sagemaker.estimator.Estimator(
    container,
    role,
    instance_count=1,
    instance_type="ml.c4.4xlarge",
    volume_size=30,
    max_run=360000,
    input_mode="File",
    output_path=s3_output_location,
    hyperparameters={
            "mode": "supervised",
            "epochs": 1,
            "min_count": 2,
            "learning_rate": 0.05,
            "vector_dim": 10,
            "early_stopping": True,
            "patience": 4,
            "min_epochs": 5,
            "word_ngrams": 2,
     },
         )
  8. 準備資料通道與演算法之間的交握。若要這麼做、請建立 sagemaker.session.s3_input 來自資料通道的物件、並將其保留在字典中、以供演算法使用。

    ln [13]: train_data = sagemaker.inputs.TrainingInput(
        s3_train_data,
        distribution="FullyReplicated",
        content_type="text/plain",
        s3_data_type="S3Prefix",
    )
    validation_data = sagemaker.inputs.TrainingInput(
        s3_validation_data,
        distribution="FullyReplicated",
        content_type="text/plain",
        s3_data_type="S3Prefix",
    )
    data_channels = {"train": train_data, "validation": validation_data}
  9. 工作完成後、會出現「工作完成」訊息。您可以在設定為的 S3 儲存貯體中找到經過訓練的機型 output_path 在評估者中。

    ln [14]: bt_model.fit(inputs=data_channels, logs=True)

    輸出:

    INFO:sagemaker:Creating training-job with name: blazingtext-2023-02-16-20-3
    7-30-748
    2023-02-16 20:37:30 Starting - Starting the training job......
    2023-02-16 20:38:09 Starting - Preparing the instances for training......
    2023-02-16 20:39:24 Downloading - Downloading input data
    2023-02-16 20:39:24 Training - Training image download completed. Training in progress... Arguments: train
    [02/16/2023 20:39:41 WARNING 140279908747072] Loggers have already been set up. [02/16/2023 20:39:41 WARNING 140279908747072] Loggers have already been set up.
    [02/16/2023 20:39:41 INFO 140279908747072] nvidia-smi took: 0.0251793861389
    16016 secs to identify 0 gpus
    [02/16/2023 20:39:41 INFO 140279908747072] Running single machine CPU Blazi ngText training using supervised mode.
    Number of CPU sockets found in instance is  1
    [02/16/2023 20:39:41 INFO 140279908747072] Processing /opt/ml/input/data/tr ain/dbpedia.train . File size: 35.0693244934082 MB
    [02/16/2023 20:39:41 INFO 140279908747072] Processing /opt/ml/input/data/va lidation/dbpedia.validation . File size: 21.887572288513184 MB
    Read 6M words
    Number of words:  149301
    Loading validation data from /opt/ml/input/data/validation/dbpedia.validati on
    Loaded validation data.
    -------------- End of epoch: 1 ##### Alpha: 0.0000  Progress: 100.00%  Million Words/sec: 10.39 ##### Training finished.
    Average throughput in Million words/sec: 10.39
    Total training time in seconds: 0.60
    #train_accuracy: 0.7223
    Number of train examples: 112000
    #validation_accuracy: 0.7205
    Number of validation examples: 70000
    2023-02-16 20:39:55 Uploading - Uploading generated training model
    2023-02-16 20:40:11 Completed - Training job completed
    Training seconds: 68
    Billable seconds: 68
  10. 訓練完成後、請將經過訓練的模型部署為 Amazon SageMaker 即時代管端點、以做出預測。

    In [15]: from sagemaker.serializers import JSONSerializer
     text_classifier = bt_model.deploy(
         initial_instance_count=1, instance_type="ml.m4.xlarge", serializer=JSONS
    )

    輸出:

    INFO:sagemaker:Creating model with name: blazingtext-2023-02-16-20-41-33-10
    0
    INFO:sagemaker:Creating endpoint-config with name blazingtext-2023-02-16-20
    -41-33-100
    INFO:sagemaker:Creating endpoint with name blazingtext-2023-02-16-20-41-33-
    100
    -------!
    In [16]: sentences = [
        "Convair was an american aircraft manufacturing company which later expanded into rockets and spacecraft.",
           "Berwick secondary college is situated in the outer melbourne metropolitan suburb of berwick .",
    ]
    # using the same nltk tokenizer that we used during data preparation for training
    tokenized_sentences = [" ".join(nltk.word_tokenize(sent)) for sent in sentences]
    payload = {"instances": tokenized_sentences} response = text_classifier.predict(payload)
    predictions = json.loads(response)
    print(json.dumps(predictions, indent=2))
    [
      {
        "label": [
          "__label__Artist"
        ],
        "prob": [
          0.4090951681137085
        ]
      },
      {
        "label": [
          "__label__EducationalInstitution"
        ],
        "prob": [
          0.49466073513031006
        ]
      }
    ]
  11. 根據預設,模型會傳回一個機率最高的預測值。以擷取頂端 k 預測、設定 k 在組態檔案中。

    In [17]: payload = {"instances": tokenized_sentences, "configuration": {"k": 2}}
     response = text_classifier.predict(payload)
    
     predictions = json.loads(response)
     print(json.dumps(predictions, indent=2))
    [
      {
        "label": [
          "__label__Artist",
          "__label__MeanOfTransportation"
        ],
        "prob": [
          0.4090951681137085,
          0.26930734515190125
        ]
      },
      {
        "label": [
          "__label__EducationalInstitution",
          "__label__Building"
        ],
        "prob": [
          0.49466073513031006,
          0.15817692875862122
        ]
      }
    ]
  12. 在關閉筆記本之前刪除端點。

    In [18]: sess.delete_endpoint(text_classifier.endpoint)
    WARNING:sagemaker.deprecations:The endpoint attribute has been renamed in s agemaker>=2.
    See: https://sagemaker.readthedocs.io/en/stable/v2.html for details.
    INFO:sagemaker:Deleting endpoint with name: blazingtext-2023-02-16-20-41-33
    -100