Data duality for data scientists and other applications
Data is available in NFS and accessed from S3 from AWS SageMaker.
Technology requirements
You need NetApp BlueXP, NetApp Cloud Volumes ONTAP, and AWS SageMaker Notebooks for the data- duality use case.
Software requirements
The following table lists the software components that are required to implement the use case.
Software | Quantity |
---|---|
BlueXP |
1 |
NetApp Cloud Volumes ONTAP |
1 |
AWS SageMaker Notebook |
1 |
Deployment procedures
Deploying the data-duality solution involves the following tasks:
-
BlueXP Connector
-
NetApp Cloud Volumes ONTAP
-
Data for machine learning
-
AWS SageMaker
-
Validated machine learning from Jupyter Notebooks
BlueXP connector
In this validation, we used AWS. It’s also applicable for Azure and Google Cloud. To create a BlueXP Connector in AWS, complete the following steps:
-
We used the credentials based on the mcarl-marketplace-subscription in BlueXP.
-
Choose the region suitable for your environment (for example, us-east-1 [N. Virginia]), and select the authentication method (for example, Assume Role or AWS keys). In this validation, we use AWS keys.
-
Provide the name of the connector and create a role.
-
Provide the network details such as the VPC, subnet, or keypair, depending on whether you need a public IP or not.
-
Provide the details for the security group, such as HTTP, HTTPS, or SSH access from the source type, such as anywhere and IP range information.
-
Review and create the BlueXP Connector.
-
Verify that the BlueXP EC2 instance state is running in the AWS console, and check the IP address from the Networking tab.
-
Log into the connector user interface from the BlueXP portal, or you can use the IP address for access from the browser.
NetApp Cloud Volumes ONTAP
To create a Cloud Volumes ONTAP instance in BlueXP, complete the following steps:
-
Create a new working environment, select the cloud provider, and select the type of Cloud Volumes ONTAP instance, (such as single-CVO, HA, or Amazon FSx ONTAP for ONTAP).
-
Provide details such as the Cloud Volumes ONTAP cluster name and credentials. In this validation, we created a Cloud Volumes ONTAP instance called
svm_sagemaker_cvo_sn1
. -
Select the services needed for Cloud Volumes ONTAP. In this validation, we choose to only monitor, so we disabled Data Sense & Compliance and Backup to Cloud Services.
-
In the Location & Connectivity section, select the AWS region, VPC, subnet, security group, SSH authentication method, and either a password or a key pair.
-
Choose the charging method. We used Professional for this validation.
-
You can choose a preconfigured package, such as POC and Small Workloads, Database and Application Data Production Workloads, Cost Effective DR, or Highest Performance Production Workloads. In this validation, we choose Poc and Small Workloads.
-
Create a volume with a specific size, allowed protocols, and export options. In this validation, we created a volume called
vol1
. -
Choose a profile disk type and tiering policy. In this validation, we disabled Storage Efficiency and General- Purpose SSD – Dynamic Performance.
-
Finally, review and create the Cloud Volumes ONTAP instance. Then wait for 15-20 minutes for BlueXP to create the Cloud Volumes ONTAP working environment.
-
Configure the following parameters to enable the Duality protocol. The Duality protocol (NFS/S3) is supported from ONTAP 9. 12.1 and later.
-
In this validation, we created an SVM called
svm_sagemaker_cvo_sn1
and volumevol1
. -
Verify that the SVM has the protocol support for NFS and S3. If not, modify the SVM to support them.
sagemaker_cvo_sn1::> vserver show -vserver svm_sagemaker_cvo_sn1 Vserver: svm_sagemaker_cvo_sn1 Vserver Type: data Vserver Subtype: default Vserver UUID: 911065dd-a8bc-11ed-bc24-e1c0f00ad86b Root Volume: svm_sagemaker_cvo_sn1_root Aggregate: aggr1 NIS Domain: - Root Volume Security Style: unix LDAP Client: - Default Volume Language Code: C.UTF-8 Snapshot Policy: default Data Services: data-cifs, data-flexcache, data-iscsi, data-nfs, data-nvme-tcp Comment: Quota Policy: default List of Aggregates Assigned: aggr1 Limit on Maximum Number of Volumes allowed: unlimited Vserver Admin State: running Vserver Operational State: running Vserver Operational State Stopped Reason: - Allowed Protocols: nfs, cifs, fcp, iscsi, ndmp, s3 Disallowed Protocols: nvme Is Vserver with Infinite Volume: false QoS Policy Group: - Caching Policy Name: - Config Lock: false IPspace Name: Default Foreground Process: - Logical Space Reporting: true Logical Space Enforcement: false Default Anti_ransomware State of the Vserver's Volumes: disabled Enable Analytics on New Volumes: false Enable Activity Tracking on New Volumes: false sagemaker_cvo_sn1::>
-
-
Create and install a CA certificate if required.
-
Create a service data policy.
sagemaker_cvo_sn1::*> network interface service-policy create -vserver svm_sagemaker_cvo_sn1 -policy sagemaker_s3_nfs_policy -services data-core,data-s3-server,data-nfs,data-flexcache sagemaker_cvo_sn1::*> network interface create -vserver svm_sagemaker_cvo_sn1 -lif svm_sagemaker_cvo_sn1_s3_lif -service-policy sagemaker_s3_nfs_policy -home-node sagemaker_cvo_sn1-01 -address 172.30.10.41 -netmask 255.255.255.192 Warning: The configured failover-group has no valid failover targets for the LIF's failover-policy. To view the failover targets for a LIF, use the "network interface show -failover" command. sagemaker_cvo_sn1::*> sagemaker_cvo_sn1::*> network interface show Logical Status Network Current Current Is Vserver Interface Admin/Oper Address/Mask Node Port Home ----------- ---------- ---------- ------------------ ------------- ------- ---- sagemaker_cvo_sn1 cluster-mgmt up/up 172.30.10.40/26 sagemaker_cvo_sn1-01 e0a true intercluster up/up 172.30.10.48/26 sagemaker_cvo_sn1-01 e0a true sagemaker_cvo_sn1-01_mgmt1 up/up 172.30.10.58/26 sagemaker_cvo_sn1-01 e0a true svm_sagemaker_cvo_sn1 svm_sagemaker_cvo_sn1_data_lif up/up 172.30.10.23/26 sagemaker_cvo_sn1-01 e0a true svm_sagemaker_cvo_sn1_mgmt_lif up/up 172.30.10.32/26 sagemaker_cvo_sn1-01 e0a true svm_sagemaker_cvo_sn1_s3_lif up/up 172.30.10.41/26 sagemaker_cvo_sn1-01 e0a true 6 entries were displayed. sagemaker_cvo_sn1::*> sagemaker_cvo_sn1::*> vserver object-store-server create -vserver svm_sagemaker_cvo_sn1 -is-http-enabled true -object-store-server svm_sagemaker_cvo_s3_sn1 -is-https-enabled false sagemaker_cvo_sn1::*> vserver object-store-server show Vserver: svm_sagemaker_cvo_sn1 Object Store Server Name: svm_sagemaker_cvo_s3_sn1 Administrative State: up HTTP Enabled: true Listener Port For HTTP: 80 HTTPS Enabled: false Secure Listener Port For HTTPS: 443 Certificate for HTTPS Connections: - Default UNIX User: pcuser Default Windows User: - Comment: sagemaker_cvo_sn1::*>
-
Check the aggregate details.
sagemaker_cvo_sn1::*> aggr show Aggregate Size Available Used% State #Vols Nodes RAID Status --------- -------- --------- ----- ------- ------ ---------------- ------------ aggr0_sagemaker_cvo_sn1_01 124.0GB 50.88GB 59% online 1 sagemaker_cvo_ raid0, sn1-01 normal aggr1 907.1GB 904.9GB 0% online 2 sagemaker_cvo_ raid0, sn1-01 normal 2 entries were displayed. sagemaker_cvo_sn1::*>
-
Create a user and group.
sagemaker_cvo_sn1::*> vserver object-store-server user create -vserver svm_sagemaker_cvo_sn1 -user s3user sagemaker_cvo_sn1::*> vserver object-store-server user show Vserver User ID Access Key Secret Key ----------- --------------- --------- ------------------- ------------------- svm_sagemaker_cvo_sn1 root 0 - - Comment: Root User svm_sagemaker_cvo_sn1 s3user 1 0ZNAX21JW5Q8AP80CQ2E PpLs4gA9K0_2gPhuykkp014gBjcC9Rbi3QDX_6rr 2 entries were displayed. sagemaker_cvo_sn1::*> sagemaker_cvo_sn1::*> vserver object-store-server group create -name s3group -users s3user -comment "" sagemaker_cvo_sn1::*> sagemaker_cvo_sn1::*> vserver object-store-server group delete -gid 1 -vserver svm_sagemaker_cvo_sn1 sagemaker_cvo_sn1::*> vserver object-store-server group create -name s3group -users s3user -comment "" -policies FullAccess sagemaker_cvo_sn1::*>
-
Create a bucket on the NFS volume.
sagemaker_cvo_sn1::*> vserver object-store-server bucket create -bucket ontapbucket1 -type nas -comment "" -vserver svm_sagemaker_cvo_sn1 -nas-path /vol1 sagemaker_cvo_sn1::*> vserver object-store-server bucket show Vserver Bucket Type Volume Size Encryption Role NAS Path ----------- --------------- -------- ----------------- ---------- ---------- ---------- ---------- svm_sagemaker_cvo_sn1 ontapbucket1 nas vol1 - false - /vol1 sagemaker_cvo_sn1::*>
AWS SageMaker
To create an AWS Notebook from AWS SageMaker, complete the following steps:
-
Make sure the user who is creating Notebook instance has an AmazonSageMakerFullAccess IAM policy or is part of an existing group that has AmazonSageMakerFullAccess rights. In this validation, the user is part of an existing group.
-
Provide the following information:
-
Notebook instance name.
-
Instance type.
-
Platform identifier.
-
Select the IAM role that has AmazonSageMakerFullAccess rights.
-
Root access – enable.
-
Encryption key - Select no custom encryption.
-
Keep the remaining default options.
-
-
In this validation, the SageMaker instance details are as follows:
-
Start the AWS Notebook.
-
Open the Jupyter lab.
-
Log into the terminal and mount the Cloud Volumes ONTAP volume.
sh-4.2$ sudo mkdir /vol1; sudo mount -t nfs 172.30.10.41:/vol1 /vol1 sh-4.2$ df -h Filesystem Size Used Avail Use% Mounted on devtmpfs 2.0G 0 2.0G 0% /dev tmpfs 2.0G 0 2.0G 0% /dev/shm tmpfs 2.0G 624K 2.0G 1% /run tmpfs 2.0G 0 2.0G 0% /sys/fs/cgroup /dev/xvda1 140G 114G 27G 82% / /dev/xvdf 4.8G 72K 4.6G 1% /home/ec2-user/SageMaker tmpfs 393M 0 393M 0% /run/user/1001 tmpfs 393M 0 393M 0% /run/user/1002 tmpfs 393M 0 393M 0% /run/user/1000 172.30.10.41:/vol1 973M 189M 785M 20% /vol1 sh-4.2$
-
Check the bucket created on the Cloud Volumes ONTAP volume using the AWS CLI commands.
sh-4.2$ aws configure --profile netapp AWS Access Key ID [None]: 0ZNAX21JW5Q8AP80CQ2E AWS Secret Access Key [None]: PpLs4gA9K0_2gPhuykkp014gBjcC9Rbi3QDX_6rr Default region name [None]: us-east-1 Default output format [None]: sh-4.2$ sh-4.2$ aws s3 ls --profile netapp --endpoint-url 2023-02-10 17:59:48 ontapbucket1 sh-4.2$ aws s3 ls --profile netapp --endpoint-url s3://ontapbucket1/ 2023-02-10 18:46:44 4747 1 2023-02-10 18:48:32 96 setup.cfg sh-4.2$
Data for machine learning
In this validation, we used a dataset from DBpedia, a crowd-sourced community effort, to extract structured content from the information created in various Wikimedia projects.
-
Download the data from the DBpedia GitHub location and extract it. Use the same terminal used in the previous section.
sh-4.2$ wget --2023-02-14 23:12:11-- Resolving github.com (github.com)... 140.82.113.3 Connecting to github.com (github.com)|140.82.113.3|:443... connected. HTTP request sent, awaiting response... 302 Found Location: [following] --2023-02-14 23:12:11-- Resolving raw.githubusercontent.com (raw.githubusercontent.com)... 185.199.109.133, 185.199.110.133, 185.199.111.133, ... Connecting to raw.githubusercontent.com (raw.githubusercontent.com)|185.199.109.133|:443... connected. HTTP request sent, awaiting response... 200 OK Length: 68431223 (65M) [application/octet-stream] Saving to: ‘dbpedia_csv.tar.gz’ 100%[==============================================================================================================================================================>] 68,431,223 56.2MB/s in 1.2s 2023-02-14 23:12:13 (56.2 MB/s) - ‘dbpedia_csv.tar.gz’ saved [68431223/68431223] sh-4.2$ tar -zxvf dbpedia_csv.tar.gz dbpedia_csv/ dbpedia_csv/test.csv dbpedia_csv/classes.txt dbpedia_csv/train.csv dbpedia_csv/readme.txt sh-4.2$
-
Copy the data to the Cloud Volumes ONTAP location and check it from the S3 bucket using the AWS CLI.
sh-4.2$ df -h Filesystem Size Used Avail Use% Mounted on devtmpfs 2.0G 0 2.0G 0% /dev tmpfs 2.0G 0 2.0G 0% /dev/shm tmpfs 2.0G 628K 2.0G 1% /run tmpfs 2.0G 0 2.0G 0% /sys/fs/cgroup /dev/xvda1 140G 114G 27G 82% / /dev/xvdf 4.8G 52K 4.6G 1% /home/ec2-user/SageMaker tmpfs 393M 0 393M 0% /run/user/1002 tmpfs 393M 0 393M 0% /run/user/1001 tmpfs 393M 0 393M 0% /run/user/1000 172.30.10.41:/vol1 973M 384K 973M 1% /vol1 sh-4.2$ pwd /home/ec2-user sh-4.2$ cp -ra dbpedia_csv /vol1 sh-4.2$ aws s3 ls --profile netapp --endpoint-url s3://ontapbucket1/ PRE dbpedia_csv/ 2023-02-10 18:46:44 4747 1 2023-02-10 18:48:32 96 setup.cfg sh-4.2$
-
Perform basic validation to make sure that read/write functionality works on the S3 bucket.
sh-4.2$ aws s3 cp --profile netapp --endpoint-url /usr/share/doc/util-linux-2.30.2 s3://ontapbucket1/ --recursive upload: ../../../usr/share/doc/util-linux-2.30.2/deprecated.txt to s3://ontapbucket1/deprecated.txt upload: ../../../usr/share/doc/util-linux-2.30.2/getopt-parse.bash to s3://ontapbucket1/getopt-parse.bash upload: ../../../usr/share/doc/util-linux-2.30.2/README to s3://ontapbucket1/README upload: ../../../usr/share/doc/util-linux-2.30.2/getopt-parse.tcsh to s3://ontapbucket1/getopt-parse.tcsh upload: ../../../usr/share/doc/util-linux-2.30.2/AUTHORS to s3://ontapbucket1/AUTHORS upload: ../../../usr/share/doc/util-linux-2.30.2/NEWS to s3://ontapbucket1/NEWS sh-4.2$ aws s3 ls --profile netapp --endpoint-url s3://ontapbucket1/s3://ontapbucket1/ An error occurred (InternalError) when calling the ListObjectsV2 operation: We encountered an internal error. Please try again. sh-4.2$ aws s3 ls --profile netapp --endpoint-url s3://ontapbucket1/ PRE dbpedia_csv/ 2023-02-16 19:19:27 26774 AUTHORS 2023-02-16 19:19:27 72727 NEWS 2023-02-16 19:19:27 4493 README 2023-02-16 19:19:27 2825 deprecated.txt 2023-02-16 19:19:27 1590 getopt-parse.bash 2023-02-16 19:19:27 2245 getopt-parse.tcsh sh-4.2$ ls -ltr /vol1 total 132 drwxrwxr-x 2 ec2-user ec2-user 4096 Mar 29 2015 dbpedia_csv -rw-r--r-- 1 nobody nobody 2245 Apr 10 17:37 getopt-parse.tcsh -rw-r--r-- 1 nobody nobody 2825 Apr 10 17:37 deprecated.txt -rw-r--r-- 1 nobody nobody 4493 Apr 10 17:37 README -rw-r--r-- 1 nobody nobody 1590 Apr 10 17:37 getopt-parse.bash -rw-r--r-- 1 nobody nobody 26774 Apr 10 17:37 AUTHORS -rw-r--r-- 1 nobody nobody 72727 Apr 10 17:37 NEWS sh-4.2$ ls -ltr /vol1/dbpedia_csv/ total 192104 -rw------- 1 ec2-user ec2-user 174148970 Mar 28 2015 train.csv -rw------- 1 ec2-user ec2-user 21775285 Mar 28 2015 test.csv -rw------- 1 ec2-user ec2-user 146 Mar 28 2015 classes.txt -rw-rw-r-- 1 ec2-user ec2-user 1758 Mar 29 2015 readme.txt sh-4.2$ chmod -R 777 /vol1/dbpedia_csv sh-4.2$ ls -ltr /vol1/dbpedia_csv/ total 192104 -rwxrwxrwx 1 ec2-user ec2-user 174148970 Mar 28 2015 train.csv -rwxrwxrwx 1 ec2-user ec2-user 21775285 Mar 28 2015 test.csv -rwxrwxrwx 1 ec2-user ec2-user 146 Mar 28 2015 classes.txt -rwxrwxrwx 1 ec2-user ec2-user 1758 Mar 29 2015 readme.txt sh-4.2$ aws s3 cp --profile netapp --endpoint-url http://172.30.2.248/ s3://ontapbucket1/ /tmp --recursive download: s3://ontapbucket1/AUTHORS to ../../tmp/AUTHORS download: s3://ontapbucket1/README to ../../tmp/README download: s3://ontapbucket1/NEWS to ../../tmp/NEWS download: s3://ontapbucket1/dbpedia_csv/classes.txt to ../../tmp/dbpedia_csv/classes.txt download: s3://ontapbucket1/dbpedia_csv/readme.txt to ../../tmp/dbpedia_csv/readme.txt download: s3://ontapbucket1/deprecated.txt to ../../tmp/deprecated.txt download: s3://ontapbucket1/getopt-parse.bash to ../../tmp/getopt-parse.bash download: s3://ontapbucket1/getopt-parse.tcsh to ../../tmp/getopt-parse.tcsh download: s3://ontapbucket1/dbpedia_csv/test.csv to ../../tmp/dbpedia_csv/test.csv download: s3://ontapbucket1/dbpedia_csv/train.csv to ../../tmp/dbpedia_csv/train.csv sh-4.2$ sh-4.2$ aws s3 ls --profile netapp --endpoint-url s3://ontapbucket1/ PRE dbpedia_csv/ 2023-02-16 19:19:27 26774 AUTHORS 2023-02-16 19:19:27 72727 NEWS 2023-02-16 19:19:27 4493 README 2023-02-16 19:19:27 2825 deprecated.txt 2023-02-16 19:19:27 1590 getopt-parse.bash 2023-02-16 19:19:27 2245 getopt-parse.tcsh sh-4.2$
Validate machine learning from Jupyter Notebooks
The following validation provides the machine-learning build, train, and deploy models through text classification by using the SageMaker BlazingText example below:
-
Install the boto3 and SageMaker packages.
In [1]: pip install --upgrade boto3 sagemaker
Output:
Looking in indexes: https://pypi.org/simple, https://pip.repos.neuron.amazo naws.com Requirement already satisfied: boto3 in /home/ec2-user/anaconda3/envs/pytho n3/lib/python3.10/site-packages (1.26.44) Collecting boto3 Downloading boto3-1.26.72-py3-none-any.whl (132 kB) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 132.7/132.7 kB 14.6 MB/s eta 0: 00:00 Requirement already satisfied: sagemaker in /home/ec2-user/anaconda3/envs/p ython3/lib/python3.10/site-packages (2.127.0) Collecting sagemaker Downloading sagemaker-2.132.0.tar.gz (668 kB) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 668.0/668.0 kB 12.3 MB/s eta 0: 00:0000:01 Preparing metadata (setup.py) ... done Collecting botocore<1.30.0,>=1.29.72 Downloading botocore-1.29.72-py3-none-any.whl (10.4 MB) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 10.4/10.4 MB 44.3 MB/s eta 0: 00:0000:010:01 Requirement already satisfied: s3transfer<0.7.0,>=0.6.0 in /home/ec2-user/a naconda3/envs/python3/lib/python3.10/site-packages (from boto3) (0.6.0) Requirement already satisfied: jmespath<2.0.0,>=0.7.1 in /home/ec2-user/ana conda3/envs/python3/lib/python3.10/site-packages (from boto3) (0.10.0) Requirement already satisfied: attrs<23,>=20.3.0 in /home/ec2-user/anaconda 3/envs/python3/lib/python3.10/site-packages (from sagemaker) (22.1.0) Requirement already satisfied: google-pasta in /home/ec2-user/anaconda3/env s/python3/lib/python3.10/site-packages (from sagemaker) (0.2.0) Requirement already satisfied: numpy<2.0,>=1.9.0 in /home/ec2-user/anaconda 3/envs/python3/lib/python3.10/site-packages (from sagemaker) (1.22.4) Requirement already satisfied: protobuf<4.0,>=3.1 in /home/ec2-user/anacond a3/envs/python3/lib/python3.10/site-packages (from sagemaker) (3.20.3) Requirement already satisfied: protobuf3-to-dict<1.0,>=0.1.5 in /home/ec2-u ser/anaconda3/envs/python3/lib/python3.10/site-packages (from sagemaker) (0.1.5) Requirement already satisfied: smdebug_rulesconfig==1.0.1 in /home/ec2-use r/anaconda3/envs/python3/lib/python3.10/site-packages (from sagemaker) (1. 0.1) Requirement already satisfied: importlib-metadata<5.0,>=1.4.0 in /home/ec2user/anaconda3/envs/python3/lib/python3.10/site-packages (from sagemaker) (4.13.0) Requirement already satisfied: packaging>=20.0 in /home/ec2-user/anaconda3/ envs/python3/lib/python3.10/site-packages (from sagemaker) (21.3) Requirement already satisfied: pandas in /home/ec2-user/anaconda3/envs/pyth on3/lib/python3.10/site-packages (from sagemaker) (1.5.1) Requirement already satisfied: pathos in /home/ec2-user/anaconda3/envs/pyth on3/lib/python3.10/site-packages (from sagemaker) (0.3.0) Requirement already satisfied: schema in /home/ec2-user/anaconda3/envs/pyth on3/lib/python3.10/site-packages (from sagemaker) (0.7.5) Requirement already satisfied: python-dateutil<3.0.0,>=2.1 in /home/ec2-use r/anaconda3/envs/python3/lib/python3.10/site-packages (from botocore<1.30. 0,>=1.29.72->boto3) (2.8.2) Requirement already satisfied: urllib3<1.27,>=1.25.4 in /home/ec2-user/anac onda3/envs/python3/lib/python3.10/site-packages (from botocore<1.30.0,>=1.2 9.72->boto3) (1.26.8) Requirement already satisfied: zipp>=0.5 in /home/ec2-user/anaconda3/envs/p ython3/lib/python3.10/site-packages (from importlib-metadata<5.0,>=1.4.0->s agemaker) (3.10.0) Requirement already satisfied: pyparsing!=3.0.5,>=2.0.2 in /home/ec2-user/a naconda3/envs/python3/lib/python3.10/site-packages (from packaging>=20.0->s agemaker) (3.0.9) Requirement already satisfied: six in /home/ec2-user/anaconda3/envs/python 3/lib/python3.10/site-packages (from protobuf3-to-dict<1.0,>=0.1.5->sagemak er) (1.16.0) Requirement already satisfied: pytz>=2020.1 in /home/ec2-user/anaconda3/env s/python3/lib/python3.10/site-packages (from pandas->sagemaker) (2022.5) Requirement already satisfied: ppft>=1.7.6.6 in /home/ec2-user/anaconda3/en vs/python3/lib/python3.10/site-packages (from pathos->sagemaker) (1.7.6.6) Requirement already satisfied: multiprocess>=0.70.14 in /home/ec2-user/anac onda3/envs/python3/lib/python3.10/site-packages (from pathos->sagemaker) (0.70.14) Requirement already satisfied: dill>=0.3.6 in /home/ec2-user/anaconda3/env s/python3/lib/python3.10/site-packages (from pathos->sagemaker) (0.3.6) Requirement already satisfied: pox>=0.3.2 in /home/ec2-user/anaconda3/envs/ python3/lib/python3.10/site-packages (from pathos->sagemaker) (0.3.2) Requirement already satisfied: contextlib2>=0.5.5 in /home/ec2-user/anacond a3/envs/python3/lib/python3.10/site-packages (from schema->sagemaker) (21. 6.0) Building wheels for collected packages: sagemaker Building wheel for sagemaker (setup.py) ... done Created wheel for sagemaker: filename=sagemaker-2.132.0-py2.py3-none-any. whl size=905449 sha256=f6100a5dc95627f2e2a49824e38f0481459a27805ee19b5a06ec 83db0252fd41 Stored in directory: /home/ec2-user/.cache/pip/wheels/60/41/b6/482e7ab096 520df034fbf2dddd244a1d7ba0681b27ef45aa61 Successfully built sagemaker Installing collected packages: botocore, boto3, sagemaker Attempting uninstall: botocore Found existing installation: botocore 1.24.19 Uninstalling botocore-1.24.19: Successfully uninstalled botocore-1.24.19 Attempting uninstall: boto3 Found existing installation: boto3 1.26.44 Uninstalling boto3-1.26.44: Successfully uninstalled boto3-1.26.44 Attempting uninstall: sagemaker Found existing installation: sagemaker 2.127.0 Uninstalling sagemaker-2.127.0: Successfully uninstalled sagemaker-2.127.0 ERROR: pip's dependency resolver does not currently take into account all t he packages that are installed. This behaviour is the source of the followi ng dependency conflicts. awscli 1.27.44 requires botocore==1.29.44, but you have botocore 1.29.72 wh ich is incompatible. aiobotocore 2.0.1 requires botocore<1.22.9,>=1.22.8, but you have botocore 1.29.72 which is incompatible. Successfully installed boto3-1.26.72 botocore-1.29.72 sagemaker-2.132.0 Note: you may need to restart the kernel to use updated packages.
-
In the following step, the data (
dbpedia_csv
) is downloaded from the s3 bucketontapbucket1
to a Jupyter Notebook instance used in machine learning.In [2]: import sagemaker In [3]: from sagemaker import get_execution_role In [4]: import json import boto3 sess = sagemaker.Session() role = get_execution_role() print(role) bucket = "ontapbucket1" print(bucket) sess.s3_client = boto3.client('s3',region_name='',aws_access_key_id = '0ZNAX21JW5Q8AP80CQ2E', aws_secret_access_key = 'PpLs4gA9K0_2gPhuykkp014gBjcC9Rbi3QDX_6rr', use_ssl = False, endpoint_url = 'http://172.30.10.41', config=boto3.session.Config(signature_version='s3v4', s3={'addressing_style':'path'}) ) sess.s3_resource = boto3.resource('s3',region_name='',aws_access_key_id = '0ZNAX21JW5Q8AP80CQ2E', aws_secret_access_key = 'PpLs4gA9K0_2gPhuykkp014gBjcC9Rbi3QDX_6rr', use_ssl = False, endpoint_url = 'http://172.30.10.41', config=boto3.session.Config(signature_version='s3v4', s3={'addressing_style':'path'}) ) prefix = "blazingtext/supervised" import os my_bucket = sess.s3_resource.Bucket(bucket) my_bucket = sess.s3_resource.Bucket(bucket) #os.mkdir('dbpedia_csv') for s3_object in my_bucket.objects.all(): filename = s3_object.key # print(filename) # print(s3_object.key) my_bucket.download_file(s3_object.key, filename)
-
The following code creates the mapping from integer indices to class labels that are used to retrieve the actual class name during inference.
index_to_label = {} with open("dbpedia_csv/classes.txt") as f: for i,label in enumerate(f.readlines()): index_to_label[str(i + 1)] = label.strip()
The output lists the files and folders in the
ontapbucket1
bucket that are used as data for the AWS SageMaker machine-learning validation.arn:aws:iam::210811600188:role/SageMakerFullRole ontapbucket1 AUTHORS AUTHORS NEWS NEWS README README dbpedia_csv/classes.txt dbpedia_csv/classes.txt dbpedia_csv/readme.txt dbpedia_csv/readme.txt dbpedia_csv/test.csv dbpedia_csv/test.csv dbpedia_csv/train.csv dbpedia_csv/train.csv deprecated.txt deprecated.txt getopt-parse.bash getopt-parse.bash getopt-parse.tcsh getopt-parse.tcsh In [5]: ls AUTHORS deprecated.txt getopt-parse.tcsh NEWS Untitled.ipynb dbpedia_csv/ getopt-parse.bash lost+found/ README In [6]: ls -l dbpedia_csv total 191344 -rw-rw-r-- 1 ec2-user ec2-user 146 Feb 16 19:43 classes.txt -rw-rw-r-- 1 ec2-user ec2-user 1758 Feb 16 19:43 readme.txt -rw-rw-r-- 1 ec2-user ec2-user 21775285 Feb 16 19:43 test.csv -rw-rw-r-- 1 ec2-user ec2-user 174148970 Feb 16 19:43 train.csv
-
Start the data preprocessing phase to preprocess the training data into a space-separated, tokenized text format that can be consumed by the BlazingText algorithm and the nltk library to tokenize the input sentences from the DBPedia dataset. Download the nltk tokenizer and other libraries. The
transform_instance
applied to each data instance in parallel uses the Python multiprocessing module.ln [7]: from random import shuffle import multiprocessing from multiprocessing import Pool import csv import nltk nltk.download("punkt") def transform_instance(row): cur_row = [] label ="__label__" + index_to_label [row[0]] # Prefix the index-ed label with __label__ cur_row.append (label) cur_row.extend(nltk.word_tokenize(row[1].lower ())) cur_row.extend(nltk.word_tokenize(row[2].lower ())) return cur_row def preprocess(input_file, output_file, keep=1): all_rows = [] with open(input_file,"r") as csvinfile: csv_reader = csv.reader(csvinfile, delimiter=",") for row in csv_reader: all_rows.append(row) shuffle(all_rows) all_rows = all_rows[: int(keep * len(all_rows))] pool = Pool(processes=multiprocessing.cpu_count()) transformed_rows = pool.map(transform_instance, all_rows) pool.close() pool. join() with open(output_file, "w") as csvoutfile: csv_writer = csv.writer (csvoutfile, delimiter=" ", lineterminator="\n") csv_writer.writerows (transformed_rows) # Preparing the training dataset # since preprocessing the whole dataset might take a couple of minutes, # we keep 20% of the training dataset for this demo. # Set keep to 1 if you want to use the complete dataset preprocess("dbpedia_csv/train.csv","dbpedia.train", keep=0.2) # Preparing the validation dataset preprocess("dbpedia_csv/test.csv","dbpedia.validation") sess = sagemaker.Session() role = get_execution_role() print (role) # This is the role that sageMaker would use to leverage Aws resources (S3, Cloudwatch) on your behalf bucket = sess.default_bucket() # Replace with your own bucket name if needed print("default Bucket::: ") print(bucket)
Output:
[nltk_data] Downloading package punkt to /home/ec2-user/nltk_data... [nltk_data] Package punkt is already up-to-date! arn:aws:iam::210811600188:role/SageMakerFullRole default Bucket::: sagemaker-us-east-1-210811600188
-
Upload the formatted and training dataset to S3 so that it can be used by SageMaker to execute training jobs. Then upload two files to the bucket and prefix location using the Python SDK.
ln [8]: %%time train_channel = prefix + "/train" validation_channel = prefix + "/validation" sess.upload_data(path="dbpedia.train", bucket=bucket, key_prefix=train_channel) sess.upload_data(path="dbpedia.validation", bucket=bucket, key_prefix=validation_channel) s3_train_data = "s3://{}/{}".format(bucket, train_channel) s3_validation_data = "s3://{}/{}".format(bucket, validation_channel)
Output:
CPU times: user 546 ms, sys: 163 ms, total: 709 ms Wall time: 1.32 s
-
Set up an output location at S3 where the model artifact is loaded so that artifacts can be the output of the algorithm’s training job. Create a
sageMaker.estimator.Estimator
object to launch the training job.In [9]: s3_output_location = "s3://{}/{}/output".format(bucket, prefix) In [10]: region_name = boto3.Session().region_name In [11]: container = sagemaker.amazon.amazon_estimator.get_image_uri(region_name, "blazingtext","latest") print("Using SageMaker BlazingText container: {} ({})".format(container, region_name))
Output:
The method get_image_uri has been renamed in sagemaker>=2. See: https://sagemaker.readthedocs.io/en/stable/v2.html for details. Defaulting to the only supported framework/algorithm version: 1. Ignoring f ramework/algorithm version: latest. Using SageMaker BlazingText container: 811284229777.dkr.ecr.us-east-1.amazo naws.com/blazingtext:1 (us-east-1)
-
Define the SageMaker
Estrimator
with resource configurations and hyperparameters to train text classification on the DBPedia dataset using the supervised mode on a c4.4xlarge instance.In [12]: bt_model = sagemaker.estimator.Estimator( container, role, instance_count=1, instance_type="ml.c4.4xlarge", volume_size=30, max_run=360000, input_mode="File", output_path=s3_output_location, hyperparameters={ "mode": "supervised", "epochs": 1, "min_count": 2, "learning_rate": 0.05, "vector_dim": 10, "early_stopping": True, "patience": 4, "min_epochs": 5, "word_ngrams": 2, }, )
-
Prepare a handshake between the data channels and the algorithm. To do this, create the
sagemaker.session.s3_input
objects from the data channels, and keep them in a dictionary for the algorithm to consume.ln [13]: train_data = sagemaker.inputs.TrainingInput( s3_train_data, distribution="FullyReplicated", content_type="text/plain", s3_data_type="S3Prefix", ) validation_data = sagemaker.inputs.TrainingInput( s3_validation_data, distribution="FullyReplicated", content_type="text/plain", s3_data_type="S3Prefix", ) data_channels = {"train": train_data, "validation": validation_data}
-
After the job has finished, a Job Complete message appears. The trained model can be found in the S3 bucket that was set up as the
output_path
in the estimator.ln [14]: bt_model.fit(inputs=data_channels, logs=True)
Output:
INFO:sagemaker:Creating training-job with name: blazingtext-2023-02-16-20-3 7-30-748 2023-02-16 20:37:30 Starting - Starting the training job...... 2023-02-16 20:38:09 Starting - Preparing the instances for training...... 2023-02-16 20:39:24 Downloading - Downloading input data 2023-02-16 20:39:24 Training - Training image download completed. Training in progress... Arguments: train [02/16/2023 20:39:41 WARNING 140279908747072] Loggers have already been set up. [02/16/2023 20:39:41 WARNING 140279908747072] Loggers have already been set up. [02/16/2023 20:39:41 INFO 140279908747072] nvidia-smi took: 0.0251793861389 16016 secs to identify 0 gpus [02/16/2023 20:39:41 INFO 140279908747072] Running single machine CPU Blazi ngText training using supervised mode. Number of CPU sockets found in instance is 1 [02/16/2023 20:39:41 INFO 140279908747072] Processing /opt/ml/input/data/tr ain/dbpedia.train . File size: 35.0693244934082 MB [02/16/2023 20:39:41 INFO 140279908747072] Processing /opt/ml/input/data/va lidation/dbpedia.validation . File size: 21.887572288513184 MB Read 6M words Number of words: 149301 Loading validation data from /opt/ml/input/data/validation/dbpedia.validati on Loaded validation data. -------------- End of epoch: 1 ##### Alpha: 0.0000 Progress: 100.00% Million Words/sec: 10.39 ##### Training finished. Average throughput in Million words/sec: 10.39 Total training time in seconds: 0.60 #train_accuracy: 0.7223 Number of train examples: 112000 #validation_accuracy: 0.7205 Number of validation examples: 70000 2023-02-16 20:39:55 Uploading - Uploading generated training model 2023-02-16 20:40:11 Completed - Training job completed Training seconds: 68 Billable seconds: 68
-
After training is complete, deploy the trained model as an Amazon SageMaker real-time hosted endpoint to make predictions.
In [15]: from sagemaker.serializers import JSONSerializer text_classifier = bt_model.deploy( initial_instance_count=1, instance_type="ml.m4.xlarge", serializer=JSONS )
Output:
INFO:sagemaker:Creating model with name: blazingtext-2023-02-16-20-41-33-10 0 INFO:sagemaker:Creating endpoint-config with name blazingtext-2023-02-16-20 -41-33-100 INFO:sagemaker:Creating endpoint with name blazingtext-2023-02-16-20-41-33- 100 -------!
In [16]: sentences = [ "Convair was an american aircraft manufacturing company which later expanded into rockets and spacecraft.", "Berwick secondary college is situated in the outer melbourne metropolitan suburb of berwick .", ] # using the same nltk tokenizer that we used during data preparation for training tokenized_sentences = [" ".join(nltk.word_tokenize(sent)) for sent in sentences] payload = {"instances": tokenized_sentences} response = text_classifier.predict(payload) predictions = json.loads(response) print(json.dumps(predictions, indent=2))
[ { "label": [ "__label__Artist" ], "prob": [ 0.4090951681137085 ] }, { "label": [ "__label__EducationalInstitution" ], "prob": [ 0.49466073513031006 ] } ]
-
By default, the model returns one prediction with the highest probability. To retrieve the top
k
predictions, setk
in the configuration file.In [17]: payload = {"instances": tokenized_sentences, "configuration": {"k": 2}} response = text_classifier.predict(payload) predictions = json.loads(response) print(json.dumps(predictions, indent=2))
[ { "label": [ "__label__Artist", "__label__MeanOfTransportation" ], "prob": [ 0.4090951681137085, 0.26930734515190125 ] }, { "label": [ "__label__EducationalInstitution", "__label__Building" ], "prob": [ 0.49466073513031006, 0.15817692875862122 ] } ]
-
Delete the endpoint before closing the notebook.
In [18]: sess.delete_endpoint(text_classifier.endpoint) WARNING:sagemaker.deprecations:The endpoint attribute has been renamed in s agemaker>=2. See: https://sagemaker.readthedocs.io/en/stable/v2.html for details. INFO:sagemaker:Deleting endpoint with name: blazingtext-2023-02-16-20-41-33 -100