Skip to main content
NetApp Solutions

Data duality for data scientists and other applications

Contributors kevin-hoke

Data is available in NFS and accessed from S3 from AWS SageMaker.

Technology requirements

You need NetApp BlueXP, NetApp Cloud Volumes ONTAP, and AWS SageMaker Notebooks for the data- duality use case.

Software requirements

The following table lists the software components that are required to implement the use case.

Software Quantity

BlueXP

1

NetApp Cloud Volumes ONTAP

1

AWS SageMaker Notebook

1

Deployment procedures

Deploying the data-duality solution involves the following tasks:

  • BlueXP Connector

  • NetApp Cloud Volumes ONTAP

  • Data for machine learning

  • AWS SageMaker

  • Validated machine learning from Jupyter Notebooks

BlueXP connector

In this validation, we used AWS. It’s also applicable for Azure and Google Cloud. To create a BlueXP Connector in AWS, complete the following steps:

  1. We used the credentials based on the mcarl-marketplace-subscription in BlueXP.

  2. Choose the region suitable for your environment (for example, us-east-1 [N. Virginia]), and select the authentication method (for example, Assume Role or AWS keys). In this validation, we use AWS keys.

  3. Provide the name of the connector and create a role.

  4. Provide the network details such as the VPC, subnet, or keypair, depending on whether you need a public IP or not.

  5. Provide the details for the security group, such as HTTP, HTTPS, or SSH access from the source type, such as anywhere and IP range information.

  6. Review and create the BlueXP Connector.

  7. Verify that the BlueXP EC2 instance state is running in the AWS console, and check the IP address from the Networking tab.

  8. Log into the connector user interface from the BlueXP portal, or you can use the IP address for access from the browser.

NetApp Cloud Volumes ONTAP

To create a Cloud Volumes ONTAP instance in BlueXP, complete the following steps:

  1. Create a new working environment, select the cloud provider, and select the type of Cloud Volumes ONTAP instance, (such as single-CVO, HA, or Amazon FSx ONTAP for ONTAP).

  2. Provide details such as the Cloud Volumes ONTAP cluster name and credentials. In this validation, we created a Cloud Volumes ONTAP instance called svm_sagemaker_cvo_sn1.

  3. Select the services needed for Cloud Volumes ONTAP. In this validation, we choose to only monitor, so we disabled Data Sense & Compliance and Backup to Cloud Services.

  4. In the Location & Connectivity section, select the AWS region, VPC, subnet, security group, SSH authentication method, and either a password or a key pair.

  5. Choose the charging method. We used Professional for this validation.

  6. You can choose a preconfigured package, such as POC and Small Workloads, Database and Application Data Production Workloads, Cost Effective DR, or Highest Performance Production Workloads. In this validation, we choose Poc and Small Workloads.

  7. Create a volume with a specific size, allowed protocols, and export options. In this validation, we created a volume called vol1.

  8. Choose a profile disk type and tiering policy. In this validation, we disabled Storage Efficiency and General- Purpose SSD – Dynamic Performance.

  9. Finally, review and create the Cloud Volumes ONTAP instance. Then wait for 15-20 minutes for BlueXP to create the Cloud Volumes ONTAP working environment.

  10. Configure the following parameters to enable the Duality protocol. The Duality protocol (NFS/S3) is supported from ONTAP 9. 12.1 and later.

    1. In this validation, we created an SVM called svm_sagemaker_cvo_sn1 and volume vol1.

    2. Verify that the SVM has the protocol support for NFS and S3. If not, modify the SVM to support them.

      sagemaker_cvo_sn1::> vserver show -vserver svm_sagemaker_cvo_sn1
                                          Vserver: svm_sagemaker_cvo_sn1
                                     Vserver Type: data
                                  Vserver Subtype: default
                                     Vserver UUID: 911065dd-a8bc-11ed-bc24-e1c0f00ad86b
                                      Root Volume: svm_sagemaker_cvo_sn1_root
                                        Aggregate: aggr1
                                       NIS Domain: -
                       Root Volume Security Style: unix
                                      LDAP Client: -
                     Default Volume Language Code: C.UTF-8
                                  Snapshot Policy: default
                                    Data Services: data-cifs, data-flexcache,
                                                   data-iscsi, data-nfs,
                                                   data-nvme-tcp
                                          Comment:
                                     Quota Policy: default
                      List of Aggregates Assigned: aggr1
       Limit on Maximum Number of Volumes allowed: unlimited
                              Vserver Admin State: running
                        Vserver Operational State: running
         Vserver Operational State Stopped Reason: -
                                Allowed Protocols: nfs, cifs, fcp, iscsi, ndmp, s3
                             Disallowed Protocols: nvme
                  Is Vserver with Infinite Volume: false
                                 QoS Policy Group: -
                              Caching Policy Name: -
                                      Config Lock: false
                                     IPspace Name: Default
                               Foreground Process: -
                          Logical Space Reporting: true
                        Logical Space Enforcement: false
      Default Anti_ransomware State of the Vserver's Volumes: disabled
                  Enable Analytics on New Volumes: false
          Enable Activity Tracking on New Volumes: false
      
      sagemaker_cvo_sn1::>
  11. Create and install a CA certificate if required.

  12. Create a service data policy.

    sagemaker_cvo_sn1::*> network interface service-policy create -vserver svm_sagemaker_cvo_sn1 -policy sagemaker_s3_nfs_policy -services data-core,data-s3-server,data-nfs,data-flexcache
    sagemaker_cvo_sn1::*> network interface create -vserver svm_sagemaker_cvo_sn1 -lif svm_sagemaker_cvo_sn1_s3_lif -service-policy sagemaker_s3_nfs_policy -home-node sagemaker_cvo_sn1-01 -address 172.30.10.41 -netmask 255.255.255.192
    
    Warning: The configured failover-group has no valid failover targets for the LIF's failover-policy. To view the failover targets for a LIF, use
             the "network interface show -failover" command.
    
    sagemaker_cvo_sn1::*>
    sagemaker_cvo_sn1::*> network interface show
    Logical    Status     Network            Current       Current Is
    Vserver     Interface  Admin/Oper Address/Mask       Node          Port    Home
    ----------- ---------- ---------- ------------------ ------------- ------- ----
    sagemaker_cvo_sn1
                cluster-mgmt up/up    172.30.10.40/26    sagemaker_cvo_sn1-01
                                                                       e0a     true
                intercluster up/up    172.30.10.48/26    sagemaker_cvo_sn1-01
                                                                       e0a     true
                sagemaker_cvo_sn1-01_mgmt1
                             up/up    172.30.10.58/26    sagemaker_cvo_sn1-01
                                                                       e0a     true
    svm_sagemaker_cvo_sn1
                svm_sagemaker_cvo_sn1_data_lif
                             up/up    172.30.10.23/26    sagemaker_cvo_sn1-01
                                                                       e0a     true
                svm_sagemaker_cvo_sn1_mgmt_lif
                             up/up    172.30.10.32/26    sagemaker_cvo_sn1-01
                                                                       e0a     true
                svm_sagemaker_cvo_sn1_s3_lif
                             up/up    172.30.10.41/26    sagemaker_cvo_sn1-01
                                                                       e0a     true
    6 entries were displayed.
    
    sagemaker_cvo_sn1::*>
    sagemaker_cvo_sn1::*> vserver object-store-server create -vserver svm_sagemaker_cvo_sn1  -is-http-enabled true -object-store-server svm_sagemaker_cvo_s3_sn1 -is-https-enabled false
    sagemaker_cvo_sn1::*> vserver object-store-server show
    
    Vserver: svm_sagemaker_cvo_sn1
    
               Object Store Server Name: svm_sagemaker_cvo_s3_sn1
                   Administrative State: up
                           HTTP Enabled: true
                 Listener Port For HTTP: 80
                          HTTPS Enabled: false
         Secure Listener Port For HTTPS: 443
      Certificate for HTTPS Connections: -
                      Default UNIX User: pcuser
                   Default Windows User: -
                                Comment:
    
    sagemaker_cvo_sn1::*>
  13. Check the aggregate details.

    sagemaker_cvo_sn1::*> aggr show
    
    
    Aggregate     Size Available Used% State   #Vols  Nodes            RAID Status
    --------- -------- --------- ----- ------- ------ ---------------- ------------
    aggr0_sagemaker_cvo_sn1_01
               124.0GB   50.88GB   59% online       1 sagemaker_cvo_   raid0,
                                                      sn1-01           normal
    aggr1      907.1GB   904.9GB    0% online       2 sagemaker_cvo_   raid0,
                                                      sn1-01           normal
    2 entries were displayed.
    
    sagemaker_cvo_sn1::*>
  14. Create a user and group.

    sagemaker_cvo_sn1::*> vserver object-store-server user create -vserver svm_sagemaker_cvo_sn1 -user s3user
    
    sagemaker_cvo_sn1::*> vserver object-store-server user show
    Vserver     User            ID        Access Key          Secret Key
    ----------- --------------- --------- ------------------- -------------------
    svm_sagemaker_cvo_sn1
                root            0         -                   -
       Comment: Root User
    svm_sagemaker_cvo_sn1
                s3user          1         0ZNAX21JW5Q8AP80CQ2E
                                                              PpLs4gA9K0_2gPhuykkp014gBjcC9Rbi3QDX_6rr
    2 entries were displayed.
    
    sagemaker_cvo_sn1::*>
    
    
    sagemaker_cvo_sn1::*> vserver object-store-server group create -name s3group -users s3user -comment ""
    
    sagemaker_cvo_sn1::*>
    sagemaker_cvo_sn1::*> vserver object-store-server group delete -gid 1 -vserver svm_sagemaker_cvo_sn1
    
    sagemaker_cvo_sn1::*> vserver object-store-server group create -name s3group -users s3user -comment "" -policies FullAccess
    
    sagemaker_cvo_sn1::*>
  15. Create a bucket on the NFS volume.

    sagemaker_cvo_sn1::*> vserver object-store-server bucket create -bucket ontapbucket1 -type nas -comment "" -vserver svm_sagemaker_cvo_sn1 -nas-path /vol1
    sagemaker_cvo_sn1::*> vserver object-store-server bucket show
    Vserver     Bucket          Type     Volume            Size       Encryption Role       NAS Path
    ----------- --------------- -------- ----------------- ---------- ---------- ---------- ----------
    svm_sagemaker_cvo_sn1
                ontapbucket1    nas      vol1              -          false      -          /vol1
    sagemaker_cvo_sn1::*>

AWS SageMaker

To create an AWS Notebook from AWS SageMaker, complete the following steps:

  1. Make sure the user who is creating Notebook instance has an AmazonSageMakerFullAccess IAM policy or is part of an existing group that has AmazonSageMakerFullAccess rights. In this validation, the user is part of an existing group.

  2. Provide the following information:

    • Notebook instance name.

    • Instance type.

    • Platform identifier.

    • Select the IAM role that has AmazonSageMakerFullAccess rights.

    • Root access – enable.

    • Encryption key - Select no custom encryption.

    • Keep the remaining default options.

  3. In this validation, the SageMaker instance details are as follows:

    Screenshot depicting the step.

    Screenshot depicting the step.

  4. Start the AWS Notebook.

    Screenshot depicting the step.

  5. Open the Jupyter lab.

    Screenshot depicting the step.

  6. Log into the terminal and mount the Cloud Volumes ONTAP volume.

    sh-4.2$ sudo mkdir /vol1; sudo mount -t nfs 172.30.10.41:/vol1 /vol1
    sh-4.2$ df -h
    Filesystem          Size  Used Avail Use% Mounted on
    devtmpfs            2.0G     0  2.0G   0% /dev
    tmpfs               2.0G     0  2.0G   0% /dev/shm
    tmpfs               2.0G  624K  2.0G   1% /run
    tmpfs               2.0G     0  2.0G   0% /sys/fs/cgroup
    /dev/xvda1          140G  114G   27G  82% /
    /dev/xvdf           4.8G   72K  4.6G   1% /home/ec2-user/SageMaker
    tmpfs               393M     0  393M   0% /run/user/1001
    tmpfs               393M     0  393M   0% /run/user/1002
    tmpfs               393M     0  393M   0% /run/user/1000
    172.30.10.41:/vol1  973M  189M  785M  20% /vol1
    sh-4.2$
  7. Check the bucket created on the Cloud Volumes ONTAP volume using the AWS CLI commands.

    sh-4.2$ aws configure --profile netapp
    AWS Access Key ID [None]: 0ZNAX21JW5Q8AP80CQ2E
    AWS Secret Access Key [None]: PpLs4gA9K0_2gPhuykkp014gBjcC9Rbi3QDX_6rr
    Default region name [None]: us-east-1
    Default output format [None]:
    sh-4.2$
    
    sh-4.2$ aws s3 ls --profile netapp --endpoint-url
    2023-02-10 17:59:48 ontapbucket1
    
    sh-4.2$ aws s3 ls --profile netapp --endpoint-url  s3://ontapbucket1/
    
    
    2023-02-10 18:46:44       4747 1
    2023-02-10 18:48:32         96 setup.cfg
    
    sh-4.2$

Data for machine learning

In this validation, we used a dataset from DBpedia, a crowd-sourced community effort, to extract structured content from the information created in various Wikimedia projects.

  1. Download the data from the DBpedia GitHub location and extract it. Use the same terminal used in the previous section.

    sh-4.2$ wget
    --2023-02-14 23:12:11--
    Resolving github.com (github.com)... 140.82.113.3
    Connecting to github.com (github.com)|140.82.113.3|:443... connected.
    HTTP request sent, awaiting response... 302 Found
    Location:  [following]
    --2023-02-14 23:12:11--
    Resolving raw.githubusercontent.com (raw.githubusercontent.com)... 185.199.109.133, 185.199.110.133, 185.199.111.133, ...
    Connecting to raw.githubusercontent.com (raw.githubusercontent.com)|185.199.109.133|:443... connected.
    HTTP request sent, awaiting response... 200 OK
    Length: 68431223 (65M) [application/octet-stream]
    Saving to: ‘dbpedia_csv.tar.gz’
    
    100%[==============================================================================================================================================================>] 68,431,223  56.2MB/s   in 1.2s
    
    2023-02-14 23:12:13 (56.2 MB/s) - ‘dbpedia_csv.tar.gz’ saved [68431223/68431223]
    
    sh-4.2$ tar -zxvf dbpedia_csv.tar.gz
    dbpedia_csv/
    dbpedia_csv/test.csv
    dbpedia_csv/classes.txt
    dbpedia_csv/train.csv
    dbpedia_csv/readme.txt
    sh-4.2$
  2. Copy the data to the Cloud Volumes ONTAP location and check it from the S3 bucket using the AWS CLI.

    sh-4.2$ df -h
    Filesystem          Size  Used Avail Use% Mounted on
    devtmpfs            2.0G     0  2.0G   0% /dev
    tmpfs               2.0G     0  2.0G   0% /dev/shm
    tmpfs               2.0G  628K  2.0G   1% /run
    tmpfs               2.0G     0  2.0G   0% /sys/fs/cgroup
    /dev/xvda1          140G  114G   27G  82% /
    /dev/xvdf           4.8G   52K  4.6G   1% /home/ec2-user/SageMaker
    tmpfs               393M     0  393M   0% /run/user/1002
    tmpfs               393M     0  393M   0% /run/user/1001
    tmpfs               393M     0  393M   0% /run/user/1000
    172.30.10.41:/vol1  973M  384K  973M   1% /vol1
    sh-4.2$ pwd
    /home/ec2-user
    sh-4.2$ cp -ra dbpedia_csv /vol1
    sh-4.2$ aws s3 ls --profile netapp --endpoint-url  s3://ontapbucket1/
                               PRE dbpedia_csv/
    2023-02-10 18:46:44       4747 1
    2023-02-10 18:48:32         96 setup.cfg
    sh-4.2$
  3. Perform basic validation to make sure that read/write functionality works on the S3 bucket.

    sh-4.2$ aws s3 cp  --profile netapp --endpoint-url  /usr/share/doc/util-linux-2.30.2 s3://ontapbucket1/ --recursive
    upload: ../../../usr/share/doc/util-linux-2.30.2/deprecated.txt to s3://ontapbucket1/deprecated.txt
    upload: ../../../usr/share/doc/util-linux-2.30.2/getopt-parse.bash to s3://ontapbucket1/getopt-parse.bash
    upload: ../../../usr/share/doc/util-linux-2.30.2/README to s3://ontapbucket1/README
    upload: ../../../usr/share/doc/util-linux-2.30.2/getopt-parse.tcsh to s3://ontapbucket1/getopt-parse.tcsh
    upload: ../../../usr/share/doc/util-linux-2.30.2/AUTHORS to s3://ontapbucket1/AUTHORS
    upload: ../../../usr/share/doc/util-linux-2.30.2/NEWS to s3://ontapbucket1/NEWS
    sh-4.2$ aws s3 ls --profile netapp --endpoint-url  s3://ontapbucket1/s3://ontapbucket1/
    
    An error occurred (InternalError) when calling the ListObjectsV2 operation: We encountered an internal error. Please try again.
    sh-4.2$ aws s3 ls --profile netapp --endpoint-url  s3://ontapbucket1/
                               PRE dbpedia_csv/
    2023-02-16 19:19:27      26774 AUTHORS
    2023-02-16 19:19:27      72727 NEWS
    2023-02-16 19:19:27       4493 README
    2023-02-16 19:19:27       2825 deprecated.txt
    2023-02-16 19:19:27       1590 getopt-parse.bash
    2023-02-16 19:19:27       2245 getopt-parse.tcsh
    sh-4.2$ ls -ltr /vol1
    total 132
    drwxrwxr-x 2 ec2-user ec2-user  4096 Mar 29  2015 dbpedia_csv
    -rw-r--r-- 1 nobody   nobody    2245 Apr 10 17:37 getopt-parse.tcsh
    -rw-r--r-- 1 nobody   nobody    2825 Apr 10 17:37 deprecated.txt
    -rw-r--r-- 1 nobody   nobody    4493 Apr 10 17:37 README
    -rw-r--r-- 1 nobody   nobody    1590 Apr 10 17:37 getopt-parse.bash
    -rw-r--r-- 1 nobody   nobody   26774 Apr 10 17:37 AUTHORS
    -rw-r--r-- 1 nobody   nobody   72727 Apr 10 17:37 NEWS
    sh-4.2$ ls -ltr /vol1/dbpedia_csv/
    total 192104
    -rw------- 1 ec2-user ec2-user 174148970 Mar 28  2015 train.csv
    -rw------- 1 ec2-user ec2-user  21775285 Mar 28  2015 test.csv
    -rw------- 1 ec2-user ec2-user       146 Mar 28  2015 classes.txt
    -rw-rw-r-- 1 ec2-user ec2-user      1758 Mar 29  2015 readme.txt
    sh-4.2$ chmod -R 777 /vol1/dbpedia_csv
    sh-4.2$ ls -ltr /vol1/dbpedia_csv/
    total 192104
    -rwxrwxrwx 1 ec2-user ec2-user 174148970 Mar 28  2015 train.csv
    -rwxrwxrwx 1 ec2-user ec2-user  21775285 Mar 28  2015 test.csv
    -rwxrwxrwx 1 ec2-user ec2-user       146 Mar 28  2015 classes.txt
    -rwxrwxrwx 1 ec2-user ec2-user      1758 Mar 29  2015 readme.txt
    sh-4.2$ aws s3 cp --profile netapp --endpoint-url http://172.30.2.248/ s3://ontapbucket1/ /tmp --recursive
    download: s3://ontapbucket1/AUTHORS to ../../tmp/AUTHORS
    download: s3://ontapbucket1/README to ../../tmp/README
    download: s3://ontapbucket1/NEWS to ../../tmp/NEWS
    download: s3://ontapbucket1/dbpedia_csv/classes.txt to ../../tmp/dbpedia_csv/classes.txt
    download: s3://ontapbucket1/dbpedia_csv/readme.txt to ../../tmp/dbpedia_csv/readme.txt
    download: s3://ontapbucket1/deprecated.txt to ../../tmp/deprecated.txt
    download: s3://ontapbucket1/getopt-parse.bash to ../../tmp/getopt-parse.bash
    download: s3://ontapbucket1/getopt-parse.tcsh to ../../tmp/getopt-parse.tcsh
    download: s3://ontapbucket1/dbpedia_csv/test.csv to ../../tmp/dbpedia_csv/test.csv
    download: s3://ontapbucket1/dbpedia_csv/train.csv to ../../tmp/dbpedia_csv/train.csv
    sh-4.2$
    sh-4.2$ aws s3 ls --profile netapp --endpoint-url  s3://ontapbucket1/
                               PRE dbpedia_csv/
    2023-02-16 19:19:27      26774 AUTHORS
    2023-02-16 19:19:27      72727 NEWS
    2023-02-16 19:19:27       4493 README
    2023-02-16 19:19:27       2825 deprecated.txt
    2023-02-16 19:19:27       1590 getopt-parse.bash
    2023-02-16 19:19:27       2245 getopt-parse.tcsh
    sh-4.2$

Validate machine learning from Jupyter Notebooks

The following validation provides the machine-learning build, train, and deploy models through text classification by using the SageMaker BlazingText example below:

  1. Install the boto3 and SageMaker packages.

    In [1]:  pip install --upgrade boto3 sagemaker

    Output:

    Looking in indexes: https://pypi.org/simple, https://pip.repos.neuron.amazo naws.com
    Requirement already satisfied: boto3 in /home/ec2-user/anaconda3/envs/pytho n3/lib/python3.10/site-packages (1.26.44)
    Collecting boto3
      Downloading boto3-1.26.72-py3-none-any.whl (132 kB)
         ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 132.7/132.7 kB 14.6 MB/s eta 0: 00:00
    Requirement already satisfied: sagemaker in /home/ec2-user/anaconda3/envs/p ython3/lib/python3.10/site-packages (2.127.0)
    Collecting sagemaker
      Downloading sagemaker-2.132.0.tar.gz (668 kB)
         ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 668.0/668.0 kB 12.3 MB/s eta 0:
    00:0000:01
      Preparing metadata (setup.py) ... done
    Collecting botocore<1.30.0,>=1.29.72
      Downloading botocore-1.29.72-py3-none-any.whl (10.4 MB)
         ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 10.4/10.4 MB 44.3 MB/s eta 0: 00:0000:010:01
    Requirement already satisfied: s3transfer<0.7.0,>=0.6.0 in /home/ec2-user/a naconda3/envs/python3/lib/python3.10/site-packages (from boto3) (0.6.0)
    Requirement already satisfied: jmespath<2.0.0,>=0.7.1 in /home/ec2-user/ana conda3/envs/python3/lib/python3.10/site-packages (from boto3) (0.10.0)
    Requirement already satisfied: attrs<23,>=20.3.0 in /home/ec2-user/anaconda
    3/envs/python3/lib/python3.10/site-packages (from sagemaker) (22.1.0)
    Requirement already satisfied: google-pasta in /home/ec2-user/anaconda3/env s/python3/lib/python3.10/site-packages (from sagemaker) (0.2.0)
    Requirement already satisfied: numpy<2.0,>=1.9.0 in /home/ec2-user/anaconda
    3/envs/python3/lib/python3.10/site-packages (from sagemaker) (1.22.4)
    Requirement already satisfied: protobuf<4.0,>=3.1 in /home/ec2-user/anacond a3/envs/python3/lib/python3.10/site-packages (from sagemaker) (3.20.3)
    Requirement already satisfied: protobuf3-to-dict<1.0,>=0.1.5 in /home/ec2-u ser/anaconda3/envs/python3/lib/python3.10/site-packages (from sagemaker)
    (0.1.5)
    Requirement already satisfied: smdebug_rulesconfig==1.0.1 in /home/ec2-use r/anaconda3/envs/python3/lib/python3.10/site-packages (from sagemaker) (1.
    0.1) Requirement already satisfied: importlib-metadata<5.0,>=1.4.0 in /home/ec2user/anaconda3/envs/python3/lib/python3.10/site-packages (from sagemaker)
    (4.13.0)
    Requirement already satisfied: packaging>=20.0 in /home/ec2-user/anaconda3/ envs/python3/lib/python3.10/site-packages (from sagemaker) (21.3)
    Requirement already satisfied: pandas in /home/ec2-user/anaconda3/envs/pyth on3/lib/python3.10/site-packages (from sagemaker) (1.5.1)
    Requirement already satisfied: pathos in /home/ec2-user/anaconda3/envs/pyth on3/lib/python3.10/site-packages (from sagemaker) (0.3.0)
    Requirement already satisfied: schema in /home/ec2-user/anaconda3/envs/pyth on3/lib/python3.10/site-packages (from sagemaker) (0.7.5) Requirement already satisfied: python-dateutil<3.0.0,>=2.1 in /home/ec2-use r/anaconda3/envs/python3/lib/python3.10/site-packages (from botocore<1.30.
    0,>=1.29.72->boto3) (2.8.2)
    Requirement already satisfied: urllib3<1.27,>=1.25.4 in /home/ec2-user/anac onda3/envs/python3/lib/python3.10/site-packages (from botocore<1.30.0,>=1.2
    9.72->boto3) (1.26.8) Requirement already satisfied: zipp>=0.5 in /home/ec2-user/anaconda3/envs/p ython3/lib/python3.10/site-packages (from importlib-metadata<5.0,>=1.4.0->s agemaker) (3.10.0)
    Requirement already satisfied: pyparsing!=3.0.5,>=2.0.2 in /home/ec2-user/a naconda3/envs/python3/lib/python3.10/site-packages (from packaging>=20.0->s agemaker) (3.0.9)
    Requirement already satisfied: six in /home/ec2-user/anaconda3/envs/python
    3/lib/python3.10/site-packages (from protobuf3-to-dict<1.0,>=0.1.5->sagemak er) (1.16.0)
    Requirement already satisfied: pytz>=2020.1 in /home/ec2-user/anaconda3/env s/python3/lib/python3.10/site-packages (from pandas->sagemaker) (2022.5)
    Requirement already satisfied: ppft>=1.7.6.6 in /home/ec2-user/anaconda3/en vs/python3/lib/python3.10/site-packages (from pathos->sagemaker) (1.7.6.6) Requirement already satisfied: multiprocess>=0.70.14 in /home/ec2-user/anac onda3/envs/python3/lib/python3.10/site-packages (from pathos->sagemaker)
    (0.70.14)
    Requirement already satisfied: dill>=0.3.6 in /home/ec2-user/anaconda3/env s/python3/lib/python3.10/site-packages (from pathos->sagemaker) (0.3.6)
    Requirement already satisfied: pox>=0.3.2 in /home/ec2-user/anaconda3/envs/ python3/lib/python3.10/site-packages (from pathos->sagemaker) (0.3.2) Requirement already satisfied: contextlib2>=0.5.5 in /home/ec2-user/anacond a3/envs/python3/lib/python3.10/site-packages (from schema->sagemaker) (21.
    6.0) Building wheels for collected packages: sagemaker
      Building wheel for sagemaker (setup.py) ... done
      Created wheel for sagemaker: filename=sagemaker-2.132.0-py2.py3-none-any. whl size=905449 sha256=f6100a5dc95627f2e2a49824e38f0481459a27805ee19b5a06ec
    83db0252fd41
      Stored in directory: /home/ec2-user/.cache/pip/wheels/60/41/b6/482e7ab096
    520df034fbf2dddd244a1d7ba0681b27ef45aa61
    Successfully built sagemaker
    Installing collected packages: botocore, boto3, sagemaker
      Attempting uninstall: botocore     Found existing installation: botocore 1.24.19
        Uninstalling botocore-1.24.19:       Successfully uninstalled botocore-1.24.19
      Attempting uninstall: boto3     Found existing installation: boto3 1.26.44
        Uninstalling boto3-1.26.44:
          Successfully uninstalled boto3-1.26.44
      Attempting uninstall: sagemaker     Found existing installation: sagemaker 2.127.0
        Uninstalling sagemaker-2.127.0:
          Successfully uninstalled sagemaker-2.127.0
    ERROR: pip's dependency resolver does not currently take into account all t he packages that are installed. This behaviour is the source of the followi ng dependency conflicts.
    awscli 1.27.44 requires botocore==1.29.44, but you have botocore 1.29.72 wh ich is incompatible.
    aiobotocore 2.0.1 requires botocore<1.22.9,>=1.22.8, but you have botocore 1.29.72 which is incompatible. Successfully installed boto3-1.26.72 botocore-1.29.72 sagemaker-2.132.0 Note: you may need to restart the kernel to use updated packages.
  2. In the following step, the data (dbpedia_csv) is downloaded from the s3 bucket ontapbucket1 to a Jupyter Notebook instance used in machine learning.

    In [2]: import sagemaker
    In [3]: from sagemaker import get_execution_role
    In [4]:
    import json
    import boto3
    sess = sagemaker.Session()
    role = get_execution_role()
    print(role)
    bucket = "ontapbucket1"
    print(bucket)
    sess.s3_client = boto3.client('s3',region_name='',aws_access_key_id = '0ZNAX21JW5Q8AP80CQ2E',  aws_secret_access_key = 'PpLs4gA9K0_2gPhuykkp014gBjcC9Rbi3QDX_6rr',
                                  use_ssl = False, endpoint_url = 'http://172.30.10.41',
                                  config=boto3.session.Config(signature_version='s3v4', s3={'addressing_style':'path'}) )
    sess.s3_resource = boto3.resource('s3',region_name='',aws_access_key_id = '0ZNAX21JW5Q8AP80CQ2E', aws_secret_access_key = 'PpLs4gA9K0_2gPhuykkp014gBjcC9Rbi3QDX_6rr',
                                  use_ssl = False, endpoint_url = 'http://172.30.10.41',
                                  config=boto3.session.Config(signature_version='s3v4', s3={'addressing_style':'path'}) )
    prefix = "blazingtext/supervised"
    import os
    my_bucket = sess.s3_resource.Bucket(bucket)
    my_bucket = sess.s3_resource.Bucket(bucket)
    #os.mkdir('dbpedia_csv')
    for s3_object in my_bucket.objects.all():
        filename = s3_object.key
    #    print(filename)
    #    print(s3_object.key)
        my_bucket.download_file(s3_object.key, filename)
  3. The following code creates the mapping from integer indices to class labels that are used to retrieve the actual class name during inference.

    index_to_label = {}
    with open("dbpedia_csv/classes.txt") as f:
        for i,label in enumerate(f.readlines()):
            index_to_label[str(i + 1)] = label.strip()

    The output lists the files and folders in the ontapbucket1 bucket that are used as data for the AWS SageMaker machine-learning validation.

    arn:aws:iam::210811600188:role/SageMakerFullRole ontapbucket1
    AUTHORS
    AUTHORS
    NEWS
    NEWS
    README README
    dbpedia_csv/classes.txt dbpedia_csv/classes.txt dbpedia_csv/readme.txt dbpedia_csv/readme.txt dbpedia_csv/test.csv dbpedia_csv/test.csv dbpedia_csv/train.csv dbpedia_csv/train.csv deprecated.txt deprecated.txt getopt-parse.bash getopt-parse.bash getopt-parse.tcsh getopt-parse.tcsh
    In [5]: ls
    AUTHORS       deprecated.txt     getopt-parse.tcsh  NEWS    Untitled.ipynb dbpedia_csv/  getopt-parse.bash  lost+found/        README
    In [6]: ls -l dbpedia_csv
    total 191344
    -rw-rw-r-- 1 ec2-user ec2-user       146 Feb 16 19:43 classes.txt
    -rw-rw-r-- 1 ec2-user ec2-user      1758 Feb 16 19:43 readme.txt
    -rw-rw-r-- 1 ec2-user ec2-user  21775285 Feb 16 19:43 test.csv
    -rw-rw-r-- 1 ec2-user ec2-user 174148970 Feb 16 19:43 train.csv
  4. Start the data preprocessing phase to preprocess the training data into a space-separated, tokenized text format that can be consumed by the BlazingText algorithm and the nltk library to tokenize the input sentences from the DBPedia dataset. Download the nltk tokenizer and other libraries. The transform_instance applied to each data instance in parallel uses the Python multiprocessing module.

    ln [7]: from random import shuffle
    import multiprocessing
    from multiprocessing import Pool
    import csv
    import nltk
    nltk.download("punkt")
    def transform_instance(row):
        cur_row = []
        label ="__label__" + index_to_label [row[0]] # Prefix the index-ed label with __label__
        cur_row.append (label)
        cur_row.extend(nltk.word_tokenize(row[1].lower ()))
        cur_row.extend(nltk.word_tokenize(row[2].lower ()))
        return cur_row
    def preprocess(input_file, output_file, keep=1):
        all_rows = []
        with open(input_file,"r") as csvinfile:
            csv_reader = csv.reader(csvinfile, delimiter=",")
            for row in csv_reader:
                all_rows.append(row)
        shuffle(all_rows)
        all_rows = all_rows[: int(keep * len(all_rows))]
        pool = Pool(processes=multiprocessing.cpu_count())
        transformed_rows = pool.map(transform_instance, all_rows)
        pool.close()
        pool. join()
        with open(output_file, "w") as csvoutfile:
            csv_writer = csv.writer (csvoutfile, delimiter=" ", lineterminator="\n")
            csv_writer.writerows (transformed_rows)
    
    # Preparing the training dataset
    # since preprocessing the whole dataset might take a couple of minutes,
    # we keep 20% of the training dataset for this demo.
    # Set keep to 1 if you want to use the complete dataset
    preprocess("dbpedia_csv/train.csv","dbpedia.train", keep=0.2)
    # Preparing the validation dataset
    preprocess("dbpedia_csv/test.csv","dbpedia.validation")
    sess = sagemaker.Session()
    role = get_execution_role()
    print (role) # This is the role that sageMaker would use to leverage Aws resources (S3,  Cloudwatch) on your behalf
    bucket = sess.default_bucket() # Replace with your own bucket name if needed
    print("default Bucket::: ")
    print(bucket)

    Output:

    [nltk_data] Downloading package punkt to /home/ec2-user/nltk_data...
    [nltk_data]   Package punkt is already up-to-date!
    arn:aws:iam::210811600188:role/SageMakerFullRole default Bucket::: sagemaker-us-east-1-210811600188
  5. Upload the formatted and training dataset to S3 so that it can be used by SageMaker to execute training jobs. Then upload two files to the bucket and prefix location using the Python SDK.

    ln [8]: %%time
    train_channel = prefix + "/train"
    validation_channel = prefix + "/validation"
    sess.upload_data(path="dbpedia.train", bucket=bucket, key_prefix=train_channel)
    sess.upload_data(path="dbpedia.validation", bucket=bucket, key_prefix=validation_channel)
    s3_train_data = "s3://{}/{}".format(bucket, train_channel)
    s3_validation_data = "s3://{}/{}".format(bucket, validation_channel)

    Output:

    CPU times: user 546 ms, sys: 163 ms, total: 709 ms
    Wall time: 1.32 s
  6. Set up an output location at S3 where the model artifact is loaded so that artifacts can be the output of the algorithm’s training job. Create a sageMaker.estimator.Estimator object to launch the training job.

    In [9]: s3_output_location = "s3://{}/{}/output".format(bucket, prefix)
    In [10]: region_name = boto3.Session().region_name
    In [11]: container = sagemaker.amazon.amazon_estimator.get_image_uri(region_name, "blazingtext","latest")
    print("Using SageMaker BlazingText container: {} ({})".format(container, region_name))

    Output:

    The method get_image_uri has been renamed in sagemaker>=2.
    See: https://sagemaker.readthedocs.io/en/stable/v2.html for details.
    Defaulting to the only supported framework/algorithm version: 1. Ignoring f ramework/algorithm version: latest.
    Using SageMaker BlazingText container: 811284229777.dkr.ecr.us-east-1.amazo naws.com/blazingtext:1 (us-east-1)
  7. Define the SageMaker Estrimator with resource configurations and hyperparameters to train text classification on the DBPedia dataset using the supervised mode on a c4.4xlarge instance.

    In [12]: bt_model = sagemaker.estimator.Estimator(
    container,
    role,
    instance_count=1,
    instance_type="ml.c4.4xlarge",
    volume_size=30,
    max_run=360000,
    input_mode="File",
    output_path=s3_output_location,
    hyperparameters={
            "mode": "supervised",
            "epochs": 1,
            "min_count": 2,
            "learning_rate": 0.05,
            "vector_dim": 10,
            "early_stopping": True,
            "patience": 4,
            "min_epochs": 5,
            "word_ngrams": 2,
     },
         )
  8. Prepare a handshake between the data channels and the algorithm. To do this, create the sagemaker.session.s3_input objects from the data channels, and keep them in a dictionary for the algorithm to consume.

    ln [13]: train_data = sagemaker.inputs.TrainingInput(
        s3_train_data,
        distribution="FullyReplicated",
        content_type="text/plain",
        s3_data_type="S3Prefix",
    )
    validation_data = sagemaker.inputs.TrainingInput(
        s3_validation_data,
        distribution="FullyReplicated",
        content_type="text/plain",
        s3_data_type="S3Prefix",
    )
    data_channels = {"train": train_data, "validation": validation_data}
  9. After the job has finished, a Job Complete message appears. The trained model can be found in the S3 bucket that was set up as the output_path in the estimator.

    ln [14]: bt_model.fit(inputs=data_channels, logs=True)

    Output:

    INFO:sagemaker:Creating training-job with name: blazingtext-2023-02-16-20-3
    7-30-748
    2023-02-16 20:37:30 Starting - Starting the training job......
    2023-02-16 20:38:09 Starting - Preparing the instances for training......
    2023-02-16 20:39:24 Downloading - Downloading input data
    2023-02-16 20:39:24 Training - Training image download completed. Training in progress... Arguments: train
    [02/16/2023 20:39:41 WARNING 140279908747072] Loggers have already been set up. [02/16/2023 20:39:41 WARNING 140279908747072] Loggers have already been set up.
    [02/16/2023 20:39:41 INFO 140279908747072] nvidia-smi took: 0.0251793861389
    16016 secs to identify 0 gpus
    [02/16/2023 20:39:41 INFO 140279908747072] Running single machine CPU Blazi ngText training using supervised mode.
    Number of CPU sockets found in instance is  1
    [02/16/2023 20:39:41 INFO 140279908747072] Processing /opt/ml/input/data/tr ain/dbpedia.train . File size: 35.0693244934082 MB
    [02/16/2023 20:39:41 INFO 140279908747072] Processing /opt/ml/input/data/va lidation/dbpedia.validation . File size: 21.887572288513184 MB
    Read 6M words
    Number of words:  149301
    Loading validation data from /opt/ml/input/data/validation/dbpedia.validati on
    Loaded validation data.
    -------------- End of epoch: 1 ##### Alpha: 0.0000  Progress: 100.00%  Million Words/sec: 10.39 ##### Training finished.
    Average throughput in Million words/sec: 10.39
    Total training time in seconds: 0.60
    #train_accuracy: 0.7223
    Number of train examples: 112000
    #validation_accuracy: 0.7205
    Number of validation examples: 70000
    2023-02-16 20:39:55 Uploading - Uploading generated training model
    2023-02-16 20:40:11 Completed - Training job completed
    Training seconds: 68
    Billable seconds: 68
  10. After training is complete, deploy the trained model as an Amazon SageMaker real-time hosted endpoint to make predictions.

    In [15]: from sagemaker.serializers import JSONSerializer
     text_classifier = bt_model.deploy(
         initial_instance_count=1, instance_type="ml.m4.xlarge", serializer=JSONS
    )

    Output:

    INFO:sagemaker:Creating model with name: blazingtext-2023-02-16-20-41-33-10
    0
    INFO:sagemaker:Creating endpoint-config with name blazingtext-2023-02-16-20
    -41-33-100
    INFO:sagemaker:Creating endpoint with name blazingtext-2023-02-16-20-41-33-
    100
    -------!
    In [16]: sentences = [
        "Convair was an american aircraft manufacturing company which later expanded into rockets and spacecraft.",
           "Berwick secondary college is situated in the outer melbourne metropolitan suburb of berwick .",
    ]
    # using the same nltk tokenizer that we used during data preparation for training
    tokenized_sentences = [" ".join(nltk.word_tokenize(sent)) for sent in sentences]
    payload = {"instances": tokenized_sentences} response = text_classifier.predict(payload)
    predictions = json.loads(response)
    print(json.dumps(predictions, indent=2))
    [
      {
        "label": [
          "__label__Artist"
        ],
        "prob": [
          0.4090951681137085
        ]
      },
      {
        "label": [
          "__label__EducationalInstitution"
        ],
        "prob": [
          0.49466073513031006
        ]
      }
    ]
  11. By default, the model returns one prediction with the highest probability. To retrieve the top k predictions, set k in the configuration file.

    In [17]: payload = {"instances": tokenized_sentences, "configuration": {"k": 2}}
     response = text_classifier.predict(payload)
    
     predictions = json.loads(response)
     print(json.dumps(predictions, indent=2))
    [
      {
        "label": [
          "__label__Artist",
          "__label__MeanOfTransportation"
        ],
        "prob": [
          0.4090951681137085,
          0.26930734515190125
        ]
      },
      {
        "label": [
          "__label__EducationalInstitution",
          "__label__Building"
        ],
        "prob": [
          0.49466073513031006,
          0.15817692875862122
        ]
      }
    ]
  12. Delete the endpoint before closing the notebook.

    In [18]: sess.delete_endpoint(text_classifier.endpoint)
    WARNING:sagemaker.deprecations:The endpoint attribute has been renamed in s agemaker>=2.
    See: https://sagemaker.readthedocs.io/en/stable/v2.html for details.
    INFO:sagemaker:Deleting endpoint with name: blazingtext-2023-02-16-20-41-33
    -100