Set up Dask with RAPIDS deployment on AKS using Helm
Suggest changes
To set up Dask with RAPIDS deployment on AKS using Helm, complete the following steps:
-
Create a namespace for installing Dask with RAPIDS.
kubectl create namespace rapids-dask
-
Create a PVC to store the click-through rate dataset:
-
Save the following YAML content to a file to create a PVC.
kind: PersistentVolumeClaim apiVersion: v1 metadata: name: pvc-criteo-data spec: accessModes: - ReadWriteMany resources: requests: storage: 1000Gi storageClassName: azurenetappfiles
-
Apply the YAML file to your Kubernetes cluster.
kubectl -n rapids-dask apply -f <your yaml file>
-
-
Clone the
rapidsai git
repository ( https://github.com/rapidsai/helm-chart).git clone https://github.com/rapidsai/helm-chart helm-chart
-
Modify
values.yaml
and include the PVC created earlier for workers and Jupyter workspace.-
Go to the
rapidsai
directory of the repository.cd helm-chart/rapidsai
-
Update the
values.yaml
file and mount the volume using PVC.dask: … worker: name: worker … mounts: volumes: - name: data persistentVolumeClaim: claimName: pvc-criteo-data volumeMounts: - name: data mountPath: /data … jupyter: name: jupyter … mounts: volumes: - name: data persistentVolumeClaim: claimName: pvc-criteo-data volumeMounts: - name: data mountPath: /data …
-
-
Go to the repository’s home directory and deploy Dask with three worker nodes on AKS using Helm.
cd .. helm dep update rapidsai helm install rapids-dask --namespace rapids-dask rapidsai