The requested article is not available. Either it doesn't apply to this version of the product or the relevant information is organized differently in this version of the docs. You can search, browse, or go back to the other version.
Appendix B: prepare_data_netapp_new.py

Collection of separate PDF docs
Creating your file...
This may take a few minutes. Thanks for your patience.
Your file is ready
This section provides a sample Python script used to prepare data for the vector database.
Appendix B: prepare_data_netapp_new.py
root@node2:~# cat prepare_data_netapp_new.py
# hello_milvus.py demonstrates the basic operations of PyMilvus, a Python SDK of Milvus.
# 1. connect to Milvus
# 2. create collection
# 3. insert data
# 4. create index
# 5. search, query, and hybrid search on entities
# 6. delete entities by PK
# 7. drop collection
import time
import os
import numpy as np
from pymilvus import (
connections,
utility,
FieldSchema, CollectionSchema, DataType,
Collection,
)
fmt = "\n=== {:30} ===\n"
search_latency_fmt = "search latency = {:.4f}s"
#num_entities, dim = 3000, 8
num_entities, dim = 3000, 16
#################################################################################
# 1. connect to Milvus
# Add a new connection alias `default` for Milvus server in `localhost:19530`
# Actually the "default" alias is a buildin in PyMilvus.
# If the address of Milvus is the same as `localhost:19530`, you can omit all
# parameters and call the method as: `connections.connect()`.
#
# Note: the `using` parameter of the following methods is default to "default".
print(fmt.format("start connecting to Milvus"))
host = os.environ.get('MILVUS_HOST')
if host == None:
host = "localhost"
print(fmt.format(f"Milvus host: {host}"))
#connections.connect("default", host=host, port="19530")
connections.connect("default", host=host, port="27017")
has = utility.has_collection("hello_milvus_ntapnew_update2_sc")
print(f"Does collection hello_milvus_ntapnew_update2_sc exist in Milvus: {has}")
#drop the collection
print(fmt.format(f"Drop collection - hello_milvus_ntapnew_update2_sc"))
utility.drop_collection("hello_milvus_ntapnew_update2_sc")
#drop the collection
print(fmt.format(f"Drop collection - hello_milvus_ntapnew_update2_sc2"))
utility.drop_collection("hello_milvus_ntapnew_update2_sc2")
#################################################################################
# 2. create collection
# We're going to create a collection with 3 fields.
# +-+------------+------------+------------------+------------------------------+
# | | field name | field type | other attributes | field description |
# +-+------------+------------+------------------+------------------------------+
# |1| "pk" | Int64 | is_primary=True | "primary field" |
# | | | | auto_id=False | |
# +-+------------+------------+------------------+------------------------------+
# |2| "random" | Double | | "a double field" |
# +-+------------+------------+------------------+------------------------------+
# |3|"embeddings"| FloatVector| dim=8 | "float vector with dim 8" |
# +-+------------+------------+------------------+------------------------------+
fields = [
FieldSchema(name="pk", dtype=DataType.INT64, is_primary=True, auto_id=False),
FieldSchema(name="random", dtype=DataType.DOUBLE),
FieldSchema(name="var", dtype=DataType.VARCHAR, max_length=65535),
FieldSchema(name="embeddings", dtype=DataType.FLOAT_VECTOR, dim=dim)
]
schema = CollectionSchema(fields, "hello_milvus_ntapnew_update2_sc")
print(fmt.format("Create collection `hello_milvus_ntapnew_update2_sc`"))
hello_milvus_ntapnew_update2_sc = Collection("hello_milvus_ntapnew_update2_sc", schema, consistency_level="Strong")
################################################################################
# 3. insert data
# We are going to insert 3000 rows of data into `hello_milvus_ntapnew_update2_sc`
# Data to be inserted must be organized in fields.
#
# The insert() method returns:
# - either automatically generated primary keys by Milvus if auto_id=True in the schema;
# - or the existing primary key field from the entities if auto_id=False in the schema.
print(fmt.format("Start inserting entities"))
rng = np.random.default_rng(seed=19530)
entities = [
# provide the pk field because `auto_id` is set to False
[i for i in range(num_entities)],
rng.random(num_entities).tolist(), # field random, only supports list
[str(i) for i in range(num_entities)],
rng.random((num_entities, dim)), # field embeddings, supports numpy.ndarray and list
]
insert_result = hello_milvus_ntapnew_update2_sc.insert(entities)
hello_milvus_ntapnew_update2_sc.flush()
print(f"Number of entities in hello_milvus_ntapnew_update2_sc: {hello_milvus_ntapnew_update2_sc.num_entities}") # check the num_entites
# create another collection
fields2 = [
FieldSchema(name="pk", dtype=DataType.INT64, is_primary=True, auto_id=True),
FieldSchema(name="random", dtype=DataType.DOUBLE),
FieldSchema(name="var", dtype=DataType.VARCHAR, max_length=65535),
FieldSchema(name="embeddings", dtype=DataType.FLOAT_VECTOR, dim=dim)
]
schema2 = CollectionSchema(fields2, "hello_milvus_ntapnew_update2_sc2")
print(fmt.format("Create collection `hello_milvus_ntapnew_update2_sc2`"))
hello_milvus_ntapnew_update2_sc2 = Collection("hello_milvus_ntapnew_update2_sc2", schema2, consistency_level="Strong")
entities2 = [
rng.random(num_entities).tolist(), # field random, only supports list
[str(i) for i in range(num_entities)],
rng.random((num_entities, dim)), # field embeddings, supports numpy.ndarray and list
]
insert_result2 = hello_milvus_ntapnew_update2_sc2.insert(entities2)
hello_milvus_ntapnew_update2_sc2.flush()
insert_result2 = hello_milvus_ntapnew_update2_sc2.insert(entities2)
hello_milvus_ntapnew_update2_sc2.flush()
# index_params = {"index_type": "IVF_FLAT", "params": {"nlist": 128}, "metric_type": "L2"}
# hello_milvus_ntapnew_update2_sc.create_index("embeddings", index_params)
# hello_milvus_ntapnew_update2_sc2.create_index(field_name="var",index_name="scalar_index")
# index_params2 = {"index_type": "Trie"}
# hello_milvus_ntapnew_update2_sc2.create_index("var", index_params2)
print(f"Number of entities in hello_milvus_ntapnew_update2_sc2: {hello_milvus_ntapnew_update2_sc2.num_entities}") # check the num_entites
root@node2:~#
Python