Skip to main content
NetApp Solutions
Die deutsche Sprachversion wurde als Serviceleistung für Sie durch maschinelle Übersetzung erstellt. Bei eventuellen Unstimmigkeiten hat die englische Sprachversion Vorrang.

Milvus mit Amazon FSX ONTAP für NetApp ONTAP - Datei und Objekt Dualität

Beitragende

In diesem Abschnitt wird die Einrichtung des milvus-Clusters mit Amazon FSX ONTAP für die Vektordatenbanklösung für NetApp erläutert.

Milvus mit Amazon FSX ONTAP für NetApp ONTAP – Datei- und Objektdualität

In diesem Abschnitt, Warum wir Vektordatenbank in der Cloud bereitstellen müssen, sowie Schritte zur Bereitstellung von Vektordatenbank ( milvus Standalone) in Amazon FSX ONTAP für NetApp ONTAP in Docker Containern.

Die Bereitstellung einer Vektordatenbank in der Cloud bietet einige signifikante Vorteile, insbesondere für Anwendungen, die die Verarbeitung von hochdimensionalen Daten und die Ausführung von Ähnlichkeitssuchen erfordern. Erstens bietet die Cloud-basierte Implementierung Skalierbarkeit, die eine einfache Anpassung der Ressourcen an die wachsenden Datenmengen und die Abfragelasten ermöglicht. Auf diese Weise wird sichergestellt, dass die Datenbank den gestiegenen Bedarf effizient bewältigen kann und gleichzeitig eine hohe Performance erhält. Zweitens bietet Cloud-Bereitstellung Hochverfügbarkeit und Disaster Recovery, da Daten an verschiedenen geografischen Standorten repliziert werden können, um das Risiko von Datenverlusten zu minimieren und einen kontinuierlichen Service auch bei unerwarteten Ereignissen sicherzustellen. Drittens bietet sie Kosteneffizienz, da Sie nur für die tatsächlich genutzten Ressourcen zahlen und je nach Bedarf vertikal skalieren können. Dadurch vermeiden Sie erhebliche Vorabinvestitionen in Hardware. Schließlich kann die Bereitstellung einer Vektordatenbank in der Cloud die Zusammenarbeit verbessern, da Daten von überall aus abgerufen und freigegeben werden können. Dies erleichtert Team-basiertes Arbeiten und datengestützte Entscheidungsfindung. Bitte überprüfen Sie die Architektur der milvus Standalone mit Amazon FSX ONTAP für NetApp ONTAP, die in dieser Validierung verwendet wird.

Die Abbildung zeigt den Input/Output-Dialog oder die Darstellung des schriftlichen Inhalts

  1. Erstellen Sie eine Amazon FSX ONTAP for NetApp ONTAP Instanz und notieren Sie sich die Details der VPC, der VPC-Sicherheitsgruppen und des Subnetzes. Diese Informationen sind erforderlich, wenn eine EC2-Instanz erstellt wird. Weitere Details finden Sie hier - https://us-east-1.console.aws.amazon.com/fsx/home?region=us-east-1#file-system-create

  2. EC2-Instanz erstellen und sicherstellen, dass VPC, Sicherheitsgruppen und Subnetz mit den Amazon FSX ONTAP für NetApp ONTAP-Instanzen übereinstimmen.

  3. Installieren Sie nfs-common mit dem Befehl 'apt-get install nfs-common' und aktualisieren Sie die Paketinformationen mit 'udo apt-get Update'.

  4. Erstellen Sie einen Mount-Ordner und mounten Sie den Amazon FSX ONTAP für NetApp ONTAP darauf.

    ubuntu@ip-172-31-29-98:~$ mkdir /home/ubuntu/milvusvectordb
    ubuntu@ip-172-31-29-98:~$ sudo mount 172.31.255.228:/vol1 /home/ubuntu/milvusvectordb
    ubuntu@ip-172-31-29-98:~$ df -h /home/ubuntu/milvusvectordb
    Filesystem            Size  Used Avail Use% Mounted on
    172.31.255.228:/vol1  973G  126G  848G  13% /home/ubuntu/milvusvectordb
    ubuntu@ip-172-31-29-98:~$
  5. Installieren Sie Docker und Docker Compose mit apt-get install.

  6. Richten Sie einen Milvus-Cluster basierend auf der Datei Docker-compose.yaml ein, die von der Milvus-Website heruntergeladen werden kann.

    root@ip-172-31-22-245:~# wget https://github.com/milvus-io/milvus/releases/download/v2.0.2/milvus-standalone-docker-compose.yml -O docker-compose.yml
    --2024-04-01 14:52:23--  https://github.com/milvus-io/milvus/releases/download/v2.0.2/milvus-standalone-docker-compose.yml
    <removed some output to save page space>
  7. Ordnen Sie im Abschnitt „Volumes“ der Datei Docker-compose.yml den NetApp-NFS-Bereitstellungspunkt dem entsprechenden Milvus-Containerpfad zu, insbesondere in etcd, minio und Standalone.Check "Anhang D: docker-compose.yml" Für Details über Änderungen in yml

  8. Überprüfen Sie die gemounteten Ordner und Dateien.

    ubuntu@ip-172-31-29-98:~/milvusvectordb$ ls -ltrh /home/ubuntu/milvusvectordb
    total 8.0K
    -rw-r--r-- 1 root root 1.8K Apr  2 16:35 s3_access.py
    drwxrwxrwx 2 root root 4.0K Apr  4 20:19 volumes
    ubuntu@ip-172-31-29-98:~/milvusvectordb$ ls -ltrh /home/ubuntu/milvusvectordb/volumes/
    total 0
    ubuntu@ip-172-31-29-98:~/milvusvectordb$ cd
    ubuntu@ip-172-31-29-98:~$ ls
    docker-compose.yml  docker-compose.yml~  milvus.yaml  milvusvectordb  vectordbvol1
    ubuntu@ip-172-31-29-98:~$
  9. Führen Sie 'docker-compose up -d' aus dem Verzeichnis aus, das die Datei docker-compose.yml enthält.

  10. Überprüfen Sie den Status des Milvus Containers.

    ubuntu@ip-172-31-29-98:~$ sudo docker-compose ps
          Name                     Command                  State                                               Ports
    ----------------------------------------------------------------------------------------------------------------------------------------------------------
    milvus-etcd         etcd -advertise-client-url ...   Up (healthy)   2379/tcp, 2380/tcp
    milvus-minio        /usr/bin/docker-entrypoint ...   Up (healthy)   0.0.0.0:9000->9000/tcp,:::9000->9000/tcp, 0.0.0.0:9001->9001/tcp,:::9001->9001/tcp
    milvus-standalone   /tini -- milvus run standalone   Up (healthy)   0.0.0.0:19530->19530/tcp,:::19530->19530/tcp, 0.0.0.0:9091->9091/tcp,:::9091->9091/tcp
    ubuntu@ip-172-31-29-98:~$
    ubuntu@ip-172-31-29-98:~$ ls -ltrh /home/ubuntu/milvusvectordb/volumes/
    total 12K
    drwxr-xr-x 3 root root 4.0K Apr  4 20:21 etcd
    drwxr-xr-x 4 root root 4.0K Apr  4 20:21 minio
    drwxr-xr-x 5 root root 4.0K Apr  4 20:21 milvus
    ubuntu@ip-172-31-29-98:~$
  11. Um die Lese- und Schreibfunktionalität der Vektordatenbank und ihrer Daten in Amazon FSX ONTAP for NetApp ONTAP zu validieren, haben wir das Python Milvus SDK und ein Beispielprogramm von PyMilvus verwendet. Installieren Sie die benötigten Pakete mit 'apt-get install python3-numpy python3-Pip' und installieren Sie PyMilvus mit 'pip3 install pymilvus'.

  12. Validieren der Schreib- und Lesevorgänge von Amazon FSX ONTAP für NetApp ONTAP in der Vektordatenbank

    root@ip-172-31-29-98:~/pymilvus/examples# python3 prepare_data_netapp_new.py
    === start connecting to Milvus     ===
    === Milvus host: localhost         ===
    Does collection hello_milvus_ntapnew_sc exist in Milvus: True
    === Drop collection - hello_milvus_ntapnew_sc ===
    === Drop collection - hello_milvus_ntapnew_sc2 ===
    === Create collection `hello_milvus_ntapnew_sc` ===
    === Start inserting entities       ===
    Number of entities in hello_milvus_ntapnew_sc: 9000
    root@ip-172-31-29-98:~/pymilvus/examples# find /home/ubuntu/milvusvectordb/
    …
    <removed content to save page space >
    …
    /home/ubuntu/milvusvectordb/volumes/minio/a-bucket/files/insert_log/448789845791611912/448789845791611913/448789845791611939/103/448789845791411923/b3def25f-c117-4fba-8256-96cb7557cd6c
    /home/ubuntu/milvusvectordb/volumes/minio/a-bucket/files/insert_log/448789845791611912/448789845791611913/448789845791611939/103/448789845791411923/b3def25f-c117-4fba-8256-96cb7557cd6c/part.1
    /home/ubuntu/milvusvectordb/volumes/minio/a-bucket/files/insert_log/448789845791611912/448789845791611913/448789845791611939/103/448789845791411923/xl.meta
    /home/ubuntu/milvusvectordb/volumes/minio/a-bucket/files/insert_log/448789845791611912/448789845791611913/448789845791611939/0
    /home/ubuntu/milvusvectordb/volumes/minio/a-bucket/files/insert_log/448789845791611912/448789845791611913/448789845791611939/0/448789845791411924
    /home/ubuntu/milvusvectordb/volumes/minio/a-bucket/files/insert_log/448789845791611912/448789845791611913/448789845791611939/0/448789845791411924/xl.meta
    /home/ubuntu/milvusvectordb/volumes/minio/a-bucket/files/insert_log/448789845791611912/448789845791611913/448789845791611939/1
    /home/ubuntu/milvusvectordb/volumes/minio/a-bucket/files/insert_log/448789845791611912/448789845791611913/448789845791611939/1/448789845791411925
    /home/ubuntu/milvusvectordb/volumes/minio/a-bucket/files/insert_log/448789845791611912/448789845791611913/448789845791611939/1/448789845791411925/xl.meta
    /home/ubuntu/milvusvectordb/volumes/minio/a-bucket/files/insert_log/448789845791611912/448789845791611913/448789845791611939/100
    /home/ubuntu/milvusvectordb/volumes/minio/a-bucket/files/insert_log/448789845791611912/448789845791611913/448789845791611939/100/448789845791411920
    /home/ubuntu/milvusvectordb/volumes/minio/a-bucket/files/insert_log/448789845791611912/448789845791611913/448789845791611939/100/448789845791411920/xl.meta
  13. Überprüfen Sie den Lesevorgang mit dem Skript verify_data_netapp.py.

    root@ip-172-31-29-98:~/pymilvus/examples# python3 verify_data_netapp.py
    === start connecting to Milvus     ===
    
    === Milvus host: localhost         ===
    
    Does collection hello_milvus_ntapnew_sc exist in Milvus: True
    {'auto_id': False, 'description': 'hello_milvus_ntapnew_sc', 'fields': [{'name': 'pk', 'description': '', 'type': <DataType.INT64: 5>, 'is_primary': True, 'auto_id': False}, {'name': 'random', 'description': '', 'type': <DataType.DOUBLE: 11>}, {'name': 'var', 'description': '', 'type': <DataType.VARCHAR: 21>, 'params': {'max_length': 65535}}, {'name': 'embeddings', 'description': '', 'type': <DataType.FLOAT_VECTOR: 101>, 'params': {'dim': 8}}], 'enable_dynamic_field': False}
    Number of entities in Milvus: hello_milvus_ntapnew_sc : 9000
    
    === Start Creating index IVF_FLAT  ===
    
    
    === Start loading                  ===
    
    
    === Start searching based on vector similarity ===
    
    hit: id: 2248, distance: 0.0, entity: {'random': 0.2777646777746381}, random field: 0.2777646777746381
    hit: id: 4837, distance: 0.07805602252483368, entity: {'random': 0.6451650959930306}, random field: 0.6451650959930306
    hit: id: 7172, distance: 0.07954417169094086, entity: {'random': 0.6141351712303128}, random field: 0.6141351712303128
    hit: id: 2249, distance: 0.0, entity: {'random': 0.7434908973629817}, random field: 0.7434908973629817
    hit: id: 830, distance: 0.05628090724349022, entity: {'random': 0.8544487225667627}, random field: 0.8544487225667627
    hit: id: 8562, distance: 0.07971227169036865, entity: {'random': 0.4464554280115878}, random field: 0.4464554280115878
    search latency = 0.1266s
    
    === Start querying with `random > 0.5` ===
    
    query result:
    -{'random': 0.6378742006852851, 'embeddings': [0.3017092, 0.74452263, 0.8009826, 0.4927033, 0.12762444, 0.29869467, 0.52859956, 0.23734547], 'pk': 0}
    search latency = 0.3294s
    
    === Start hybrid searching with `random > 0.5` ===
    
    hit: id: 4837, distance: 0.07805602252483368, entity: {'random': 0.6451650959930306}, random field: 0.6451650959930306
    hit: id: 7172, distance: 0.07954417169094086, entity: {'random': 0.6141351712303128}, random field: 0.6141351712303128
    hit: id: 515, distance: 0.09590047597885132, entity: {'random': 0.8013175797590888}, random field: 0.8013175797590888
    hit: id: 2249, distance: 0.0, entity: {'random': 0.7434908973629817}, random field: 0.7434908973629817
    hit: id: 830, distance: 0.05628090724349022, entity: {'random': 0.8544487225667627}, random field: 0.8544487225667627
    hit: id: 1627, distance: 0.08096684515476227, entity: {'random': 0.9302397069516164}, random field: 0.9302397069516164
    search latency = 0.2674s
    Does collection hello_milvus_ntapnew_sc2 exist in Milvus: True
    {'auto_id': True, 'description': 'hello_milvus_ntapnew_sc2', 'fields': [{'name': 'pk', 'description': '', 'type': <DataType.INT64: 5>, 'is_primary': True, 'auto_id': True}, {'name': 'random', 'description': '', 'type': <DataType.DOUBLE: 11>}, {'name': 'var', 'description': '', 'type': <DataType.VARCHAR: 21>, 'params': {'max_length': 65535}}, {'name': 'embeddings', 'description': '', 'type': <DataType.FLOAT_VECTOR: 101>, 'params': {'dim': 8}}], 'enable_dynamic_field': False}
  14. Wenn der Kunde auf NFS-Daten zugreifen möchte, die in der Vektordatenbank über das S3-Protokoll für KI-Workloads getestet wurden (lesen), kann dies mit einem einfachen Python-Programm validiert werden. Ein Beispiel hierfür könnte eine Ähnlichkeitssuche von Bildern aus einer anderen Anwendung sein, wie im Bild zu Beginn dieses Abschnitts erwähnt.

    root@ip-172-31-29-98:~/pymilvus/examples# sudo python3 /home/ubuntu/milvusvectordb/s3_access.py -i 172.31.255.228 --bucket milvusnasvol --access-key PY6UF318996I86NBYNDD --secret-key hoPctr9aD88c1j0SkIYZ2uPa03vlbqKA0c5feK6F
    OBJECTS in the bucket milvusnasvol are :
    ***************************************
    …
    <output content removed to save page space>
    …
    bucket/files/insert_log/448789845791611912/448789845791611913/448789845791611920/0/448789845791411917/xl.meta
    volumes/minio/a-bucket/files/insert_log/448789845791611912/448789845791611913/448789845791611920/1/448789845791411918/xl.meta
    volumes/minio/a-bucket/files/insert_log/448789845791611912/448789845791611913/448789845791611920/100/448789845791411913/xl.meta
    volumes/minio/a-bucket/files/insert_log/448789845791611912/448789845791611913/448789845791611920/101/448789845791411914/xl.meta
    volumes/minio/a-bucket/files/insert_log/448789845791611912/448789845791611913/448789845791611920/102/448789845791411915/xl.meta
    volumes/minio/a-bucket/files/insert_log/448789845791611912/448789845791611913/448789845791611920/103/448789845791411916/1c48ab6e-1546-4503-9084-28c629216c33/part.1
    volumes/minio/a-bucket/files/insert_log/448789845791611912/448789845791611913/448789845791611920/103/448789845791411916/xl.meta
    volumes/minio/a-bucket/files/insert_log/448789845791611912/448789845791611913/448789845791611939/0/448789845791411924/xl.meta
    volumes/minio/a-bucket/files/insert_log/448789845791611912/448789845791611913/448789845791611939/1/448789845791411925/xl.meta
    volumes/minio/a-bucket/files/insert_log/448789845791611912/448789845791611913/448789845791611939/100/448789845791411920/xl.meta
    volumes/minio/a-bucket/files/insert_log/448789845791611912/448789845791611913/448789845791611939/101/448789845791411921/xl.meta
    volumes/minio/a-bucket/files/insert_log/448789845791611912/448789845791611913/448789845791611939/102/448789845791411922/xl.meta
    volumes/minio/a-bucket/files/insert_log/448789845791611912/448789845791611913/448789845791611939/103/448789845791411923/b3def25f-c117-4fba-8256-96cb7557cd6c/part.1
    volumes/minio/a-bucket/files/insert_log/448789845791611912/448789845791611913/448789845791611939/103/448789845791411923/xl.meta
    volumes/minio/a-bucket/files/stats_log/448789845791211880/448789845791211881/448789845791411889/100/1/xl.meta
    volumes/minio/a-bucket/files/stats_log/448789845791211880/448789845791211881/448789845791411889/100/448789845791411912/xl.meta
    volumes/minio/a-bucket/files/stats_log/448789845791611912/448789845791611913/448789845791611920/100/1/xl.meta
    volumes/minio/a-bucket/files/stats_log/448789845791611912/448789845791611913/448789845791611920/100/448789845791411919/xl.meta
    volumes/minio/a-bucket/files/stats_log/448789845791611912/448789845791611913/448789845791611939/100/1/xl.meta
    volumes/minio/a-bucket/files/stats_log/448789845791611912/448789845791611913/448789845791611939/100/448789845791411926/xl.meta
    ***************************************
    root@ip-172-31-29-98:~/pymilvus/examples#

    Dieser Abschnitt zeigt effektiv, wie Kunden mithilfe von Amazon NetApp FSX ONTAP für NetApp ONTAP Storage eine eigenständige Milvus-Einrichtung in Docker Containern implementieren und betreiben können. Mit dieser Einrichtung können Kunden die Leistungsfähigkeit von Vektordatenbanken für die Verarbeitung von hochdimensionalen Daten und die Ausführung komplexer Abfragen nutzen – all dies in der skalierbaren und effizienten Umgebung von Docker Containern. Durch Erstellung einer Amazon FSX ONTAP for NetApp ONTAP Instanz und Anpassung der EC2-Instanz können Kunden für optimale Ressourcenauslastung und Datenmanagement sorgen. Die erfolgreiche Validierung von Datenschreibungs- und Lesevorgängen von FSX ONTAP in der Vektordatenbank bietet Kunden die Sicherheit zuverlässiger und konsistenter Datenoperationen. Darüber hinaus bietet die Möglichkeit, Daten aus KI-Workloads über das S3-Protokoll aufzulisten (zu lesen), eine verbesserte Datenverfügbarkeit. Dieser umfassende Prozess bietet Kunden daher eine robuste und effiziente Lösung für das Management ihrer umfangreichen Datenabläufe und nutzt dabei die Funktionen von Amazon FSX ONTAP for NetApp ONTAP.